mirror of
https://github.com/Jaxan/ons-hs.git
synced 2025-04-27 14:47:45 +02:00
Adds Permutable and stuff to do the usual nominal computations, not only ordered ones. Not (yet) efficient tough.
This commit is contained in:
parent
4698b4d260
commit
5f27219f12
8 changed files with 398 additions and 5 deletions
|
@ -114,8 +114,11 @@ values, that can be much faster.
|
|||
|
||||
## Changelog
|
||||
|
||||
version 0.3.0.0 (2024-11-06):
|
||||
version 0.3.1.0 (2024-11-06):
|
||||
* More types of products
|
||||
* Stuff to do permutations (not only monotone ones)
|
||||
* New LStar variant, which can learn equivariant (wrt permutations) languages
|
||||
with fewer queries. But it is slower.
|
||||
|
||||
version 0.2.3.0 (2024-11-05):
|
||||
* Updates the testing and benchmarking framework.
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
{-# language DeriveGeneric #-}
|
||||
{-# language DerivingVia #-}
|
||||
{-# language FlexibleContexts #-}
|
||||
{-# language ImportQualifiedPost #-}
|
||||
{-# language RecordWildCards #-}
|
||||
{-# language UndecidableInstances #-}
|
||||
{-# OPTIONS_GHC -Wno-missing-signatures #-}
|
||||
|
@ -10,14 +11,16 @@ module ExampleAutomata
|
|||
, module Automata
|
||||
) where
|
||||
|
||||
import Nominal hiding (product)
|
||||
import Automata
|
||||
import EquivariantMap qualified as Map
|
||||
import EquivariantSet qualified as Set
|
||||
import IO
|
||||
import Nominal hiding (product)
|
||||
import OrbitList
|
||||
import qualified EquivariantMap as Map
|
||||
import qualified EquivariantSet as Set
|
||||
import Permutable
|
||||
|
||||
import Data.Foldable (fold)
|
||||
import Data.Map.Strict qualified as Data.Map
|
||||
import GHC.Generics (Generic)
|
||||
import Prelude as P hiding (map, product, words, filter, foldr)
|
||||
|
||||
|
@ -69,6 +72,11 @@ data FifoA = Put Atom | Get Atom
|
|||
deriving (Eq, Ord, Show, Generic)
|
||||
deriving Nominal via Generically FifoA
|
||||
|
||||
-- TODO: find a generic way to derive this.
|
||||
instance Permutable FifoA where
|
||||
act (Permuted (Perm m) (Put p)) = Put $ Data.Map.findWithDefault p p m
|
||||
act (Permuted (Perm m) (Get p)) = Get $ Data.Map.findWithDefault p p m
|
||||
|
||||
instance ToStr FifoA where
|
||||
toStr (Put a) = "Put " ++ toStr a
|
||||
toStr (Get a) = "Get " ++ toStr a
|
||||
|
|
227
app/LStarPerm.hs
Normal file
227
app/LStarPerm.hs
Normal file
|
@ -0,0 +1,227 @@
|
|||
{-# LANGUAGE DerivingVia #-}
|
||||
{-# LANGUAGE FlexibleContexts #-}
|
||||
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
|
||||
{-# LANGUAGE PartialTypeSignatures #-}
|
||||
{-# LANGUAGE RecordWildCards #-}
|
||||
{-# LANGUAGE StandaloneDeriving #-}
|
||||
{-# LANGUAGE UndecidableInstances #-}
|
||||
{-# OPTIONS_GHC -Wno-partial-type-signatures #-}
|
||||
|
||||
import Automata (Word)
|
||||
import ExampleAutomata
|
||||
import IO
|
||||
import Quotient
|
||||
import OrbitList
|
||||
import EquivariantMap (EquivariantMap(..), (!))
|
||||
import qualified EquivariantMap as Map
|
||||
import qualified EquivariantSet as Set
|
||||
import Nominal (Nominal, Orbit, Trivially(..))
|
||||
import Permutable
|
||||
|
||||
import Data.List (tails)
|
||||
import Data.Maybe (catMaybes)
|
||||
import Control.Monad.State
|
||||
import System.IO (hFlush, stdout)
|
||||
import Prelude hiding (filter, null, elem, lookup, product, Word, map, take, init)
|
||||
|
||||
newtype PermEquivariantMap k v = PEqMap { unPEqMap :: EquivariantMap k v }
|
||||
deriving Nominal via Trivially (EquivariantMap k v)
|
||||
|
||||
-- Defined by the join-semilattice structure of EquivariantMap, left biased.
|
||||
deriving instance Ord (Orbit k) => Monoid (PermEquivariantMap k v)
|
||||
deriving instance Ord (Orbit k) => Semigroup (PermEquivariantMap k v)
|
||||
|
||||
lookupP :: (Permutable k, Nominal k, Nominal v, _) => k -> PermEquivariantMap k v -> Maybe v
|
||||
lookupP x (PEqMap m) = case catMaybes [Map.lookup (act px) m | px <- allPermuted x] of
|
||||
[] -> Nothing
|
||||
(v:_) -> Just v -- take first hit, maybe this is wrong? I guess for v ~ Bool it's fine?
|
||||
|
||||
insertP :: (Nominal k, Nominal v, _) => k -> v -> PermEquivariantMap k v -> PermEquivariantMap k v
|
||||
insertP k v = PEqMap . Map.insert k v . unPEqMap
|
||||
|
||||
(!~) :: (Permutable k, Nominal k, Nominal v, _) => PermEquivariantMap k v -> k -> v
|
||||
(!~) m k = case lookupP k m of
|
||||
Just v -> v
|
||||
Nothing -> error "Key not found (in PermEquivariantMap)"
|
||||
|
||||
-- We use Lists, as they provide a bit more laziness
|
||||
type Rows a = OrbitList (Word a)
|
||||
type Columns a = OrbitList (Word a)
|
||||
type Table a = PermEquivariantMap (Word a) Bool
|
||||
|
||||
|
||||
-- Utility functions
|
||||
exists f = not . null . filter f
|
||||
forAll f = null . filter (not . f)
|
||||
ext p a = p <> [a]
|
||||
|
||||
equalRows :: _ => Word a -> Word a -> Columns a -> Table a -> Bool
|
||||
equalRows t0 s0 suffs table =
|
||||
forAll (\((t, s), e) -> lookupP (s ++ e) table == lookupP (t ++ e) table) $ product (singleOrbit (t0, s0)) suffs
|
||||
|
||||
closed :: _ => Word a -> Rows a -> Columns a -> Table a -> Bool
|
||||
closed t prefs suffs table =
|
||||
exists (\(t, s) -> equalRows t s suffs table) (leftProduct (singleOrbit t) prefs)
|
||||
|
||||
nonClosedness :: _ => Rows a -> Rows a -> Columns a -> Table a -> Rows a
|
||||
nonClosedness prefs prefsExt suffs table =
|
||||
filter (\t -> not $ closed t prefs suffs table) prefsExt
|
||||
|
||||
inconsistencies :: _ => Rows a -> Columns a -> Table a -> OrbitList a -> OrbitList ((Word a, Word a), (a, Word a))
|
||||
inconsistencies prefs suffs table alph =
|
||||
filter (\((s, t), (a, e)) -> lookupP (s ++ (a:e)) table /= lookupP (t ++ (a:e)) table) candidatesExt
|
||||
where
|
||||
candidates = filter (\(s, t) -> s < t && equalRows s t suffs table) (product prefs prefs)
|
||||
candidatesExt = product candidates (product alph suffs)
|
||||
|
||||
|
||||
-- Main state of the L* algorithm
|
||||
-- invariants: * prefs and prefsExt disjoint, without dups
|
||||
-- * prefsExt ordered
|
||||
-- * prefs and (prefs `union` prefsExt) prefix-closed
|
||||
-- * table defined on (prefs `union` prefsExt) * suffs
|
||||
data Observations a = Observations
|
||||
{ alph :: OrbitList a
|
||||
, prefs :: Rows a
|
||||
, prefsExt :: Rows a
|
||||
, suffs :: Columns a
|
||||
, table :: Table a
|
||||
}
|
||||
|
||||
-- input alphabet, inner monad, return value
|
||||
type LStar i m a = StateT (Observations i) m a
|
||||
|
||||
-- First lookup, then membership query, also update the table
|
||||
ask mq (p, s) = do
|
||||
Observations{..} <- get
|
||||
let w = p ++ s
|
||||
case lookupP w table of
|
||||
Just b -> return (w, b)
|
||||
Nothing -> do
|
||||
b <- lift (mq w)
|
||||
modify $ \o -> o { table = insertP w b table }
|
||||
return (w, b)
|
||||
|
||||
-- precondition: newPrefs is subset of prefExts
|
||||
addRows :: _ => Rows a -> (Word a -> m Bool) -> LStar a m ()
|
||||
addRows newPrefs mq = do
|
||||
Observations{..} <- get
|
||||
let newPrefsExt = productWith ext newPrefs alph
|
||||
rect = product newPrefsExt suffs
|
||||
_ <- mapM (ask mq) (OrbitList.toList rect)
|
||||
modify $ \o -> o { prefs = prefs <> newPrefs
|
||||
, prefsExt = (prefsExt `minus` newPrefs) `union` newPrefsExt
|
||||
}
|
||||
return ()
|
||||
|
||||
-- precondition: newSuffs disjoint from suffs
|
||||
addCols :: _ => Columns a -> (Word a -> m Bool) -> LStar a m ()
|
||||
addCols newSuffs mq = do
|
||||
Observations{..} <- get
|
||||
let rect = product (prefs `union` prefsExt) newSuffs
|
||||
_ <- mapM (ask mq) (OrbitList.toList rect)
|
||||
modify $ \o -> o { suffs = suffs <> newSuffs }
|
||||
return ()
|
||||
|
||||
fillTable :: _ => (Word a -> m Bool) -> LStar a m ()
|
||||
fillTable mq = do
|
||||
Observations{..} <- get
|
||||
let rect = product (prefs `union` prefsExt) suffs
|
||||
_ <- mapM (ask mq) (OrbitList.toList rect)
|
||||
return ()
|
||||
|
||||
-- This could be cleaned up
|
||||
learn :: _ => (Word a -> m Bool) -> (Automaton _ a -> m (Maybe (Word a))) -> LStar a m (Automaton _ a)
|
||||
learn mq eq = do
|
||||
Observations{..} <- get
|
||||
let ncl = nonClosedness prefs prefsExt suffs table
|
||||
inc = inconsistencies prefs suffs table alph
|
||||
case null ncl of
|
||||
False -> do
|
||||
-- If not closed, then add 1 orbit of rows. Then start from top
|
||||
addRows (take 1 ncl) mq
|
||||
learn mq eq
|
||||
True -> do
|
||||
-- Closed! Now we check consistency
|
||||
case null inc of
|
||||
False -> do
|
||||
-- If not consistent, then add 1 orbit of columns. Then start from top
|
||||
addCols (take 1 (map (uncurry (:) . snd) inc)) mq
|
||||
learn mq eq
|
||||
True -> do
|
||||
-- Also consistent! Let's build a minimal automaton!
|
||||
let (f, st, _) = quotientf 0 (\s t -> s == t || equalRows s t suffs table) prefs
|
||||
trans = Map.fromList . toList . map (\(s, t) -> (s, f ! t)) . filter (\(s, t) -> equalRows s t suffs table) $ product prefsExt prefs
|
||||
trans2 pa = if pa `elem` prefsExt then trans ! pa else f ! pa
|
||||
hypothesis = Automaton
|
||||
{ states = map fst st
|
||||
, initialState = f ! []
|
||||
, acceptance = Map.fromList . toList . map (\p -> (f ! p, table !~ p)) $ prefs
|
||||
, transition = Map.fromList . toList . map (\(p, a) -> ((f ! p, a), trans2 (ext p a))) $ product prefs alph
|
||||
}
|
||||
askCe = do
|
||||
ce <- lift (eq hypothesis)
|
||||
case ce of
|
||||
Nothing -> return hypothesis
|
||||
Just w -> do
|
||||
let b1 = accepts hypothesis w
|
||||
(_, b2) <- ask mq (w, [])
|
||||
-- Ignore false counterexamples
|
||||
case b1 == b2 of
|
||||
True -> askCe
|
||||
False -> do
|
||||
-- Add all suffixes of a counterexample
|
||||
let allSuffs = Set.fromList $ tails w
|
||||
newSuffs = allSuffs `Set.difference` Set.fromOrbitList suffs
|
||||
addCols (Set.toOrbitList newSuffs) mq
|
||||
learn mq eq
|
||||
askCe
|
||||
|
||||
|
||||
-- Here is the teacher: just pose the queries in the terminal
|
||||
askMember :: _ => Word a -> IO Bool
|
||||
askMember w = do
|
||||
putStrLn (toStr (MQ w))
|
||||
hFlush stdout
|
||||
a <- getLine
|
||||
case a of
|
||||
"Y" -> return True
|
||||
"N" -> return False
|
||||
_ -> askMember w
|
||||
|
||||
askEquiv :: _ => Automaton q a -> IO (Maybe (Word a))
|
||||
askEquiv aut = do
|
||||
putStr "EQ \""
|
||||
putStr (toStr aut)
|
||||
putStrLn "\""
|
||||
hFlush stdout
|
||||
a <- getLine
|
||||
case a of
|
||||
"Y" -> return Nothing
|
||||
'N':' ':w -> return $ Just (fst $ fromStr w)
|
||||
_ -> askEquiv aut
|
||||
|
||||
init alph = Observations
|
||||
{ alph = alph
|
||||
, prefs = singleOrbit []
|
||||
, prefsExt = productWith ext (singleOrbit []) alph
|
||||
, suffs = singleOrbit[]
|
||||
, table = mempty
|
||||
}
|
||||
|
||||
main :: IO ()
|
||||
main = do
|
||||
putStrLn "ALPHABET"
|
||||
hFlush stdout
|
||||
alph <- getLine
|
||||
case alph of
|
||||
"ATOMS" -> do
|
||||
aut <- evalStateT (fillTable askMember >> learn askMember askEquiv) (init rationals)
|
||||
return ()
|
||||
"FIFO" -> do
|
||||
let alph = map Put rationals `union` map Get rationals
|
||||
aut <- evalStateT (fillTable askMember >> learn askMember askEquiv) (init alph)
|
||||
return ()
|
||||
al -> do
|
||||
putStr "Unknown alphabet "
|
||||
putStrLn al
|
13
ons-hs.cabal
13
ons-hs.cabal
|
@ -29,6 +29,7 @@ library
|
|||
Nominal.Class,
|
||||
Nominal.Products,
|
||||
OrbitList,
|
||||
Permutable,
|
||||
Quotient,
|
||||
Support,
|
||||
Support.OrdList,
|
||||
|
@ -55,6 +56,17 @@ executable ons-hs-lstar
|
|||
ExampleAutomata,
|
||||
IO
|
||||
|
||||
executable ons-hs-lstar-perm
|
||||
import: stuff
|
||||
hs-source-dirs: app
|
||||
main-is: LStarPerm.hs
|
||||
build-depends:
|
||||
mtl,
|
||||
ons-hs
|
||||
other-modules:
|
||||
ExampleAutomata,
|
||||
IO
|
||||
|
||||
executable ons-hs-teacher
|
||||
import: stuff
|
||||
hs-source-dirs: app
|
||||
|
@ -97,6 +109,7 @@ test-suite ons-hs-test
|
|||
main-is: Spec.hs
|
||||
other-modules:
|
||||
SpecMap,
|
||||
SpecPermutable,
|
||||
SpecSet,
|
||||
SpecUtils
|
||||
build-depends:
|
||||
|
|
31
run-lstar-perm.sh
Executable file
31
run-lstar-perm.sh
Executable file
|
@ -0,0 +1,31 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
# Example usage of how to run lstar against a non-interactive teacher. This
|
||||
# script will create two fifos for the learner and teacher to communicate over.
|
||||
# The communication is not visible, only output to stderr will be shown in
|
||||
# the terminal
|
||||
|
||||
# safety flags, remove x if you don't like all the output
|
||||
set -euxo pipefail
|
||||
|
||||
# create temporary directory, and names for the fifo queues (not files)
|
||||
tempdir=$(mktemp -d run-lstar.temp.XXXXXX)
|
||||
queryfifo="$tempdir/queries"
|
||||
answerfifo="$tempdir/answers"
|
||||
|
||||
# find the binary for the learner and teacher.
|
||||
# The haskell project must be built beforehard (cabal build all)
|
||||
lstar=$(cabal list-bin ons-hs-lstar-perm)
|
||||
teacher=$(cabal list-bin ons-hs-teacher)
|
||||
|
||||
# make the connection for the processes
|
||||
mkfifo $queryfifo $answerfifo
|
||||
|
||||
# run the teacher in the background
|
||||
$teacher < $queryfifo > $answerfifo &
|
||||
|
||||
# run the learning algorithm, measuring its time
|
||||
time $lstar > $queryfifo < $answerfifo
|
||||
|
||||
# clean up
|
||||
rm -r $tempdir
|
82
src/Permutable.hs
Normal file
82
src/Permutable.hs
Normal file
|
@ -0,0 +1,82 @@
|
|||
{-# LANGUAGE ImportQualifiedPost #-}
|
||||
|
||||
module Permutable where
|
||||
|
||||
import Data.List (permutations)
|
||||
import Data.Map.Strict qualified as Map
|
||||
|
||||
import Nominal
|
||||
import Support
|
||||
|
||||
---------------------------------
|
||||
---------------------------------
|
||||
|
||||
-- Invariant: No element occurs more than once
|
||||
newtype Perm = Perm (Map.Map Rat Rat)
|
||||
deriving (Eq, Ord, Show)
|
||||
|
||||
identity :: Perm
|
||||
identity = Perm Map.empty
|
||||
|
||||
-- Composition (right to left)
|
||||
-- TODO: check this implementation!
|
||||
compose :: Perm -> Perm -> Perm
|
||||
compose (Perm f) (Perm g) = reduce . Perm $ Map.compose f g <> g <> f
|
||||
|
||||
-- Removes elements which are mapped to itself
|
||||
reduce :: Perm -> Perm
|
||||
reduce (Perm f) = Perm . Map.filterWithKey (\k v -> k /= v) $ f
|
||||
|
||||
---------------------------------
|
||||
---------------------------------
|
||||
|
||||
-- Invariant: The permutation only consists of elements of the support of the
|
||||
-- element a.
|
||||
-- This is supposed to be a monad. For now, I don't implement the Monad
|
||||
-- typeclass, but do everything by hand. (I am not going to use do notation
|
||||
-- anyway.)
|
||||
data Permuted a = Permuted Perm a
|
||||
deriving (Eq, Ord, Show)
|
||||
|
||||
embed :: a -> Permuted a
|
||||
embed = Permuted identity
|
||||
|
||||
-- to revalidate the invariant
|
||||
shrink :: Nominal a => Permuted a -> Permuted a
|
||||
shrink (Permuted (Perm m) a) = Permuted (Perm (Map.filter (\p -> elem p (toList (support a))) m)) a
|
||||
|
||||
join :: Permuted (Permuted a) -> Permuted a
|
||||
join (Permuted f (Permuted g a)) = Permuted (compose f g) a
|
||||
|
||||
mapped :: Nominal b => (a -> b) -> Permuted a -> Permuted b
|
||||
mapped fun (Permuted f a) = shrink $ Permuted f (fun a)
|
||||
|
||||
bind :: Nominal b => (a -> Permuted b) -> Permuted a -> Permuted b
|
||||
bind comp (Permuted f a) = case comp a of
|
||||
Permuted g b -> shrink $ Permuted (compose g f) b
|
||||
|
||||
allPermutations :: Support -> [Perm]
|
||||
allPermutations (Support xs) = fmap (reduce . Perm . Map.fromList . zip xs) . permutations $ xs
|
||||
|
||||
-- Returns a lazy list
|
||||
allPermuted :: Nominal a => a -> [Permuted a]
|
||||
allPermuted el = fmap (flip Permuted el) . allPermutations . support $ el
|
||||
|
||||
---------------------------------
|
||||
---------------------------------
|
||||
|
||||
-- I want Nominal to be a superclass. But for now that gets in the way (as
|
||||
-- Permuted is not yet a Nominal type).
|
||||
-- Note that acting on an element may change its orbit (as ordered nominal
|
||||
-- set).
|
||||
class Permutable a where
|
||||
act :: Permuted a -> a
|
||||
|
||||
instance Permutable (Permuted a) where
|
||||
act = join
|
||||
|
||||
instance Permutable Rat where
|
||||
act (Permuted (Perm m) p) = Map.findWithDefault p p m
|
||||
|
||||
instance Permutable a => Permutable [a] where
|
||||
act (Permuted f ls) = fmap (\x -> act (Permuted f x)) ls
|
|
@ -10,6 +10,7 @@ import OrbitList (repeatRationals, size)
|
|||
import Support (Rat (..))
|
||||
|
||||
import SpecMap
|
||||
import SpecPermutable
|
||||
import SpecSet
|
||||
import SpecUtils ()
|
||||
|
||||
|
@ -17,7 +18,7 @@ main :: IO ()
|
|||
main = defaultMain allTests
|
||||
|
||||
allTests :: TestTree
|
||||
allTests = testGroup "main" [setTests, mapTests, countingTests, qcTests]
|
||||
allTests = testGroup "main" [setTests, mapTests, countingTests, qcTests, permutableTests]
|
||||
|
||||
-- Verifying that the number of orbits is correct. Up to length 7, because
|
||||
-- length 8 and longer take at least one second.
|
||||
|
|
28
test/SpecPermutable.hs
Normal file
28
test/SpecPermutable.hs
Normal file
|
@ -0,0 +1,28 @@
|
|||
{-# OPTIONS_GHC -Wno-orphans #-}
|
||||
|
||||
module SpecPermutable (permutableTests) where
|
||||
|
||||
import Test.Tasty
|
||||
import Test.Tasty.HUnit hiding (assert)
|
||||
|
||||
import Nominal
|
||||
import Permutable
|
||||
import Support (Rat (..))
|
||||
|
||||
import SpecUtils
|
||||
|
||||
permutableTests :: TestTree
|
||||
permutableTests = testGroup "Permutable" [assocTest n | n <- [0 .. 6]]
|
||||
|
||||
-- For n = 7, this takes roughly 30 seconds!
|
||||
assocTest :: Int -> TestTree
|
||||
assocTest n =
|
||||
testCase ("associativity " <> show n) $
|
||||
assert and $
|
||||
[lhs f g == rhs f g | f <- perms, g <- perms]
|
||||
where
|
||||
element = fmap (Rat . toRational) $ [1 .. n]
|
||||
supp = support element
|
||||
perms = allPermutations supp
|
||||
lhs f g = act (Permuted (compose f g) element)
|
||||
rhs f g = act (Permuted f (act (Permuted g element)))
|
Loading…
Add table
Reference in a new issue