mirror of
https://github.com/Jaxan/ons-hs.git
synced 2025-04-27 14:47:45 +02:00
Construction of Hypothesis
This commit is contained in:
parent
11f57c8339
commit
b414b64c1a
5 changed files with 68 additions and 8 deletions
57
app/LStar.hs
57
app/LStar.hs
|
@ -7,25 +7,44 @@
|
|||
module Main where
|
||||
|
||||
import Nominal hiding (product)
|
||||
import Support (Rat(..))
|
||||
import Support (Rat(..), Support(..), intersect)
|
||||
import OrbitList --(OrbitList(..), singleOrbit, product, productWith, filter, null, elem, rationals)
|
||||
import qualified OrbitList as List
|
||||
import EquivariantMap (EquivariantMap(..), lookup)
|
||||
import EquivariantMap (EquivariantMap(..), lookup, (!))
|
||||
import qualified EquivariantMap as Map
|
||||
import EquivariantSet (EquivariantSet(..))
|
||||
import qualified EquivariantSet as Set
|
||||
|
||||
import Data.List (nub)
|
||||
import Control.Monad.State
|
||||
import Prelude hiding (filter, null, elem, lookup, product, Word, map, take)
|
||||
import Prelude hiding (filter, null, elem, lookup, product, Word, map, take, partition)
|
||||
|
||||
type Word a = [a]
|
||||
type Rows a = OrbitList (Word a)
|
||||
type Columns a = OrbitList (Word a)
|
||||
type Table a = EquivariantMap (Word a) Bool
|
||||
|
||||
-- states, initial state, acceptance, transition
|
||||
data Automaton q a = Automaton
|
||||
{ states :: OrbitList q
|
||||
, initialState :: q
|
||||
, acceptance :: EquivariantMap q Bool
|
||||
, transition :: EquivariantMap (q, a) q
|
||||
}
|
||||
|
||||
instance (Nominal q, Nominal a, Show q, Show a) => Show (Automaton q a) where
|
||||
show Automaton{..} =
|
||||
"{ states = " ++ show (toList states) ++
|
||||
", initialState = " ++ show initialState ++
|
||||
", acceptance = " ++ show (Map.toList acceptance) ++
|
||||
", transition = " ++ show (Map.toList transition) ++
|
||||
"}"
|
||||
|
||||
|
||||
-- Utility functions
|
||||
exists f = not . null . filter f
|
||||
forAll f = null . filter (not . f)
|
||||
ext = \p a -> p <> [a]
|
||||
ext p a = p <> [a]
|
||||
|
||||
equalRows :: (Nominal a, Ord (Orbit a)) => Word a -> Word a -> Columns a -> Table a -> Bool
|
||||
equalRows s0 t0 suffs table =
|
||||
|
@ -52,6 +71,18 @@ ask mq table (p, s) =
|
|||
Just b -> return (w, b)
|
||||
Nothing -> (w,) <$> mq w
|
||||
|
||||
quotient :: _ => EquivariantSet (a, a) -> OrbitList a -> (EquivariantMap a (Int, Support), OrbitList (Int, Support))
|
||||
quotient equiv ls = go 0 Map.empty OrbitList.empty (toList ls)
|
||||
where
|
||||
go n phi acc [] = (phi, acc)
|
||||
go n phi acc (a:as) =
|
||||
let (y0, r0) = partition (\p -> p `Set.member` equiv) (product (singleOrbit a) (fromList as))
|
||||
y1 = filter (\p -> p `Set.member` equiv) (product (singleOrbit a) (singleOrbit a))
|
||||
y2 = map (\(a1, a2) -> (a2, (n, support a1 `intersect` support a2))) (y1 <> y0)
|
||||
m0 = Map.fromListWith (\(n1, s1) (n2, s2) -> (n1, s1 `intersect` s2)) . OrbitList.toList $ y2
|
||||
l0 = take 1 . fromList . fmap snd $ Map.toList m0
|
||||
in go (n+1) (phi <> m0) (acc <> l0) (Set.toList . Set.fromOrbitList . map snd $ r0)
|
||||
|
||||
|
||||
-- invariants: * prefs and prefsExt disjoint, without dups
|
||||
-- * prefsExt ordered
|
||||
|
@ -107,7 +138,7 @@ fillTable mq = do
|
|||
}
|
||||
return ()
|
||||
|
||||
learn :: _ => (Word a -> IO Bool) -> LStar a IO ()
|
||||
learn :: _ => (Word a -> IO Bool) -> LStar a IO (Automaton _ _)
|
||||
learn mq = do
|
||||
Observations{..} <- get
|
||||
let ncl = nonClosedness prefs prefsExt suffs table
|
||||
|
@ -123,7 +154,18 @@ learn mq = do
|
|||
False -> do
|
||||
addCols (take 1 (map (uncurry (:) . snd) inc)) mq
|
||||
learn mq
|
||||
True -> return ()
|
||||
True -> do
|
||||
let equiv = Set.fromOrbitList . filter (\(s, t) -> equalRows s t suffs table) $ product prefs prefs
|
||||
(f, s) = quotient equiv prefs
|
||||
trans = Map.fromList . toList . map (\(s, t) -> (s, f ! t)) . filter (\(s, t) -> equalRows s t suffs table) $ product prefsExt prefs
|
||||
trans2 pa = if pa `elem` prefsExt then trans ! pa else f ! pa
|
||||
lift (print (Map.toList trans))
|
||||
return Automaton
|
||||
{ states = s
|
||||
, initialState = f ! []
|
||||
, acceptance = Map.fromList . toList . map (\p -> (f ! p, table ! p)) $ prefs
|
||||
, transition = Map.fromList . toList . map (\(p, a) -> ((f ! p, a), trans2 (ext p a))) $ product prefs alph
|
||||
}
|
||||
|
||||
|
||||
accept :: Show a => Word a -> IO Bool
|
||||
|
@ -143,6 +185,7 @@ main = do
|
|||
suffs = singleOrbit []
|
||||
table = Map.empty
|
||||
init = Observations{..}
|
||||
evalStateT (fillTable accept >> learn accept) init
|
||||
aut <- evalStateT (fillTable accept >> learn accept) init
|
||||
print aut
|
||||
return ()
|
||||
|
||||
|
|
|
@ -10,6 +10,7 @@ module EquivariantMap where
|
|||
import Data.Semigroup (Semigroup)
|
||||
import Data.Map (Map)
|
||||
import qualified Data.Map as Map
|
||||
import Data.Maybe (fromMaybe)
|
||||
|
||||
import EquivariantSet (EquivariantSet(..))
|
||||
import Nominal
|
||||
|
@ -55,6 +56,8 @@ member x (EqMap m) = Map.member (toOrbit x) m
|
|||
lookup :: (Nominal k, Ord (Orbit k), Nominal v) => k -> EquivariantMap k v -> Maybe v
|
||||
lookup x (EqMap m) = mapelInv x <$> Map.lookup (toOrbit x) m
|
||||
|
||||
(!) :: (Nominal k, Ord (Orbit k), Nominal v) => EquivariantMap k v -> k -> v
|
||||
(!) m k = fromMaybe undefined (EquivariantMap.lookup k m)
|
||||
|
||||
-- Construction
|
||||
|
||||
|
@ -112,6 +115,9 @@ toList (EqMap l) = [(k, mapelInv k vob) | (ko, vob) <- Map.toList l, let k = get
|
|||
fromList :: (Nominal k, Nominal v, Ord (Orbit k)) => [(k, v)] -> EquivariantMap k v
|
||||
fromList l = EqMap . Map.fromList $ [(toOrbit k, mapel k v) | (k, v) <- l]
|
||||
|
||||
fromListWith :: forall k v. (Nominal k, Nominal v, Ord (Orbit k)) => (v -> v -> v) -> [(k, v)] -> EquivariantMap k v
|
||||
fromListWith f l = EqMap . Map.fromListWithKey opf $ [(toOrbit k, mapel k v) | (k, v) <- l]
|
||||
where opf ko p1 p2 = let k = getElementE ko :: k in mapel k (mapelInv k p1 `f` mapelInv k p2)
|
||||
|
||||
|
||||
-- Filter
|
||||
|
|
|
@ -91,6 +91,7 @@ deriving via (Trivial Void) instance Nominal Void
|
|||
deriving via (Trivial ()) instance Nominal ()
|
||||
deriving via (Trivial Bool) instance Nominal Bool
|
||||
deriving via (Trivial Char) instance Nominal Char
|
||||
deriving via (Trivial Int) instance Nominal Int -- NB: Trivial instance!
|
||||
deriving via (Trivial Ordering) instance Nominal Ordering
|
||||
|
||||
|
||||
|
|
|
@ -54,6 +54,10 @@ map f (OrbitList as) = OrbitList $ L.map (omap f) as
|
|||
filter :: Nominal a => (a -> Bool) -> OrbitList a -> OrbitList a
|
||||
filter f = OrbitList . L.filter (f . getElementE) . unOrbitList
|
||||
|
||||
partition :: Nominal a => (a -> Bool) -> OrbitList a -> (OrbitList a, OrbitList a)
|
||||
partition f (OrbitList s) = both OrbitList . L.partition (f . getElementE) $ s
|
||||
where both g (a, b) = (g a, g b)
|
||||
|
||||
take :: Int -> OrbitList a -> OrbitList a
|
||||
take n = OrbitList . L.take n . unOrbitList
|
||||
|
||||
|
|
|
@ -7,7 +7,10 @@ import Support.Rat
|
|||
|
||||
-- always sorted
|
||||
newtype Support = Support { unSupport :: [Rat] }
|
||||
deriving (Show, Eq, Ord)
|
||||
deriving (Eq, Ord)
|
||||
|
||||
instance Show Support where
|
||||
show = show . unSupport
|
||||
|
||||
size :: Support -> Int
|
||||
size = List.length . unSupport
|
||||
|
@ -24,6 +27,9 @@ empty = Support []
|
|||
union :: Support -> Support -> Support
|
||||
union (Support x) (Support y) = Support (OrdList.union x y)
|
||||
|
||||
intersect :: Support -> Support -> Support
|
||||
intersect (Support x) (Support y) = Support (OrdList.isect x y)
|
||||
|
||||
singleton :: Rat -> Support
|
||||
singleton r = Support [r]
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue