1
Fork 0
mirror of https://github.com/Jaxan/ons-hs.git synced 2025-04-27 14:47:45 +02:00

More on handling counterexamples

This commit is contained in:
Joshua Moerman 2019-01-11 16:40:38 +01:00
parent 6b89d2dc5f
commit d5a1cea46b
2 changed files with 61 additions and 48 deletions

View file

@ -1,7 +1,6 @@
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE PartialTypeSignatures #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE TupleSections #-}
{-# OPTIONS_GHC -Wno-partial-type-signatures #-}
module Main where
@ -10,7 +9,6 @@ import OnsAutomata
import OnsQuotient
import OrbitList
import qualified OrbitList as List
import EquivariantMap (EquivariantMap(..), lookup, (!))
import qualified EquivariantMap as Map
import qualified EquivariantSet as Set
@ -19,12 +17,12 @@ import Data.List (tails)
import Control.Monad.State
import Prelude hiding (filter, null, elem, lookup, product, Word, map, take)
-- We use Lists, as they provide a bit more laziness
type Rows a = OrbitList (Word a)
type Columns a = OrbitList (Word a)
type Table a = EquivariantMap (Word a) Bool
-- Utility functions
exists f = not . null . filter f
forAll f = null . filter (not . f)
@ -49,13 +47,8 @@ inconsistencies prefs suffs table alph =
candidates = filter (\(s, t) -> s < t && equalRows s t suffs table) (product prefs prefs)
candidatesExt = product candidates (product alph suffs)
-- First lookup, then membership query
ask mq table (p, s) =
let w = p ++ s in case lookup w table of
Just b -> return (w, b)
Nothing -> (w,) <$> mq w
-- Main state of the L* algorithm
-- invariants: * prefs and prefsExt disjoint, without dups
-- * prefsExt ordered
-- * prefs and (prefs `union` prefsExt) prefix-closed
@ -71,19 +64,27 @@ data Observations a = Observations
-- input alphabet, inner monad, return value
type LStar i m a = StateT (Observations i) m a
-- First lookup, then membership query, also update the table
ask mq (p, s) = do
Observations{..} <- get
let w = p ++ s
case lookup w table of
Just b -> return (w, b)
Nothing -> do
b <- lift (mq w)
modify $ \o -> o { table = Map.insert w b table }
return (w, b)
-- precondition: newPrefs is subset of prefExts
addRows :: _ => Rows a -> (Word a -> m Bool) -> LStar a m ()
addRows newPrefs mq = do
Observations{..} <- get
let newPrefsExt = productWith ext newPrefs alph
rect = product newPrefsExt suffs
ans <- lift $ mapM (ask mq table) (List.toList rect)
put $ Observations
{ prefs = prefs <> newPrefs
, prefsExt = (prefsExt `minus` newPrefs) `union` newPrefsExt
, table = table <> Map.fromList ans
, ..
}
_ <- mapM (ask mq) (OrbitList.toList rect)
modify $ \o -> o { prefs = prefs <> newPrefs
, prefsExt = (prefsExt `minus` newPrefs) `union` newPrefsExt
}
return ()
-- precondition: newSuffs disjoint from suffs
@ -91,40 +92,37 @@ addCols :: _ => Columns a -> (Word a -> m Bool) -> LStar a m ()
addCols newSuffs mq = do
Observations{..} <- get
let rect = product (prefs `union` prefsExt) newSuffs
ans <- lift $ mapM (ask mq table) (List.toList rect)
put $ Observations
{ suffs = suffs <> newSuffs
, table = table <> Map.fromList ans
, ..
}
_ <- mapM (ask mq) (OrbitList.toList rect)
modify $ \o -> o { suffs = suffs <> newSuffs }
return ()
fillTable :: _ => (Word a -> m Bool) -> LStar a m ()
fillTable mq = do
Observations{..} <- get
let rect = product (prefs `union` prefsExt) suffs
ans <- lift $ mapM (ask mq table) (List.toList rect)
put $ Observations
{ table = Map.fromList ans
, ..
}
_ <- mapM (ask mq) (OrbitList.toList rect)
return ()
learn :: _ => (Word a -> IO Bool) -> LStar a IO (Automaton _ _)
learn mq = do
-- This could be cleaned up
learn :: _ => (Word a -> m Bool) -> (Automaton _ a -> m (Maybe (Word a))) -> LStar a m (Automaton _ a)
learn mq eq = do
Observations{..} <- get
let ncl = nonClosedness prefs prefsExt suffs table
inc = inconsistencies prefs suffs table alph
case null ncl of
False -> do
-- If not closed, then add 1 orbit of rows. Then start from top
addRows (take 1 ncl) mq
learn mq
learn mq eq
True -> do
-- Closed! Now we check consistency
case null inc of
False -> do
-- If not consistent, then add 1 orbit of columns. Then start from top
addCols (take 1 (map (uncurry (:) . snd) inc)) mq
learn mq
learn mq eq
True -> do
-- Also consistent! Let's build a minimal automaton!
let equiv = Set.fromOrbitList . filter (\(s, t) -> equalRows s t suffs table) $ product prefs prefs
(f, s) = quotient equiv prefs
trans = Map.fromList . toList . map (\(s, t) -> (s, f ! t)) . filter (\(s, t) -> equalRows s t suffs table) $ product prefsExt prefs
@ -135,19 +133,28 @@ learn mq = do
, acceptance = Map.fromList . toList . map (\p -> (f ! p, table ! p)) $ prefs
, transition = Map.fromList . toList . map (\(p, a) -> ((f ! p, a), trans2 (ext p a))) $ product prefs alph
}
eq <- lift (askEquiv hypothesis)
case eq of
Nothing -> return hypothesis
Just w -> do
lift (print w)
let allSuffs = Set.fromList $ tails w
newSuffs = allSuffs `Set.difference` Set.fromOrbitList suffs
addCols (Set.toOrbitList newSuffs) mq
learn mq
askCe = do
ce <- lift (eq hypothesis)
case ce of
Nothing -> return hypothesis
Just w -> do
let b1 = accepts hypothesis w
(_, b2) <- ask mq (w, [])
-- Ignore false counterexamples
case b1 == b2 of
True -> askCe
False -> do
-- Add all suffixes of a counterexample
let allSuffs = Set.fromList $ tails w
newSuffs = allSuffs `Set.difference` Set.fromOrbitList suffs
addCols (Set.toOrbitList newSuffs) mq
learn mq eq
askCe
accept :: _ => Word a -> IO Bool
accept w = do
-- Here is the teacher: just pose the queries in the terminal
askMember :: _ => Word a -> IO Bool
askMember w = do
putStr "MQ \""
putStr (toStr w)
putStrLn "\""
@ -155,7 +162,7 @@ accept w = do
case a of
"Y" -> return True
"N" -> return False
_ -> accept w
_ -> askMember w
askEquiv :: _ => Automaton q a -> IO (Maybe (Word a))
askEquiv aut = do
@ -176,7 +183,5 @@ main = do
suffs = singleOrbit []
table = Map.empty
init = Observations{..}
aut <- evalStateT (fillTable accept >> learn accept) init
putStrLn "Done learning :D"
aut <- evalStateT (fillTable askMember >> learn askMember askEquiv) init
return ()

View file

@ -1,3 +1,4 @@
{-# language FlexibleContexts #-}
{-# language RecordWildCards #-}
module OnsAutomata where
@ -8,9 +9,9 @@ import Data.List (intersperse)
import Nominal
import Support (Rat(..), Support(..))
import OrbitList as L (OrbitList, toList)
import EquivariantMap as M (EquivariantMap, toList)
import EquivariantMap as M (EquivariantMap, toList, (!))
import Prelude hiding (print)
import Prelude hiding (print, Word)
type Word a = [a]
@ -23,6 +24,13 @@ data Automaton q a = Automaton
, transition :: EquivariantMap (q, a) q
}
accepts :: (Nominal q, Ord (Orbit q), Nominal a, Ord (Orbit a))
=> Automaton q a -> Word a -> Bool
accepts aut l = go (initialState aut) l
where
go s [] = acceptance aut ! s
go s (a:w) = go (transition aut ! (s, a)) w
-- I do not want to give weird Show instances for basic types, so I create my