1
Fork 0
mirror of https://github.com/Jaxan/satuio.git synced 2025-04-26 22:27:46 +02:00

First(ish) version of the UIO solver

This commit is contained in:
Joshua Moerman 2022-01-17 08:56:37 +01:00
parent 362ee1f589
commit 8b2750e07a
4 changed files with 45586 additions and 2 deletions

View file

@ -1,2 +1,30 @@
# satuio
Using SAT solvers to construct UIOs and ADSs
satuio
======
Using SAT solvers to construct UIOs and ADSs for Mealy machines.
## Dependencies
This project uses Python. It uses the following packages which can be
installed with `pip`.
* pysat
* tqdm
## Usage
(Note: this project is still WIP and the commands will change.)
```bash
# <file> <length>
python3 uio.py examples/esm-0.dot 3
```
## Copyright
© Joshua Moerman, Open Universiteit

45273
examples/esm-0.dot Normal file

File diff suppressed because it is too large Load diff

48
examples/quic.dot Normal file
View file

@ -0,0 +1,48 @@
digraph g {
__start0 [label="" shape="none"];
s0 [shape="circle" label="0"];
s1 [shape="circle" label="1"];
s2 [shape="circle" label="2"];
s3 [shape="circle" label="3"];
s4 [shape="circle" label="4"];
s5 [shape="circle" label="5"];
s6 [shape="circle" label="6"];
s0 -> s1 [label="INIT-CHLO / REJ"];
s0 -> s0 [label="GET / PRST"];
s0 -> s0 [label="CLOSE / closed"];
s0 -> s0 [label="FULL-CHLO / PRST"];
s0 -> s1 [label="0RTT-CHLO / REJ"];
s1 -> s2 [label="INIT-CHLO / REJ"];
s1 -> s3 [label="GET / EXP"];
s1 -> s1 [label="CLOSE / closed"];
s1 -> s4 [label="FULL-CHLO / shlo"];
s1 -> s4 [label="0RTT-CHLO / shlo"];
s2 -> s2 [label="INIT-CHLO / REJ"];
s2 -> s2 [label="GET / EXP"];
s2 -> s2 [label="CLOSE / closed"];
s2 -> s2 [label="FULL-CHLO / EXP"];
s2 -> s4 [label="0RTT-CHLO / shlo"];
s3 -> s1 [label="INIT-CHLO / REJ"];
s3 -> s5 [label="GET / EXP"];
s3 -> s2 [label="CLOSE / closed"];
s3 -> s2 [label="FULL-CHLO / EXP"];
s3 -> s4 [label="0RTT-CHLO / shlo"];
s4 -> s1 [label="INIT-CHLO / REJ"];
s4 -> s2 [label="GET / http"];
s4 -> s6 [label="CLOSE / closed"];
s4 -> s2 [label="FULL-CHLO / EXP"];
s4 -> s4 [label="0RTT-CHLO / shlo"];
s5 -> s1 [label="INIT-CHLO / REJ"];
s5 -> s2 [label="GET / EXP"];
s5 -> s2 [label="CLOSE / closed"];
s5 -> s2 [label="FULL-CHLO / EXP"];
s5 -> s4 [label="0RTT-CHLO / shlo"];
s6 -> s1 [label="INIT-CHLO / REJ"];
s6 -> s6 [label="GET / PRST"];
s6 -> s6 [label="CLOSE / closed"];
s6 -> s6 [label="FULL-CHLO / PRST"];
s6 -> s4 [label="0RTT-CHLO / shlo"];
__start0 -> s0;
}

235
uio.py Normal file
View file

@ -0,0 +1,235 @@
from pysat.solvers import Solver
from pysat.formula import IDPool
from pysat.card import CardEnc, EncType
import time
import argparse
from tqdm import tqdm
solver_name = 'g3'
verbose = True
start = time.time()
def measure_time(*str):
global start
now = time.time()
print('***', *str, "in %.3f seconds" % (now - start))
start = now
# Automaton
parser = argparse.ArgumentParser()
parser.add_argument('filename', help='File of the mealy machine (dot format)')
parser.add_argument('length', help="Length of the uio", type=int)
args = parser.parse_args()
length = args.length
alphabet = set()
outputs = set()
states = set()
bases = set(['s0', 's4', 's37', 's555'])
delta = {}
labda = {}
# Quick and dirty .dot parser
with open(args.filename) as file:
for line in file.readlines():
asdf = line.split()
if len(asdf) > 3 and asdf[1] == '->':
s = asdf[0]
t = asdf[2]
rest = ''.join(asdf[3:])
label = rest.split('"')[1]
[i, o] = label.split('/')
states.add(s)
states.add(t)
alphabet.add(i)
outputs.add(o)
delta[(s, i)] = t
labda[(s, i)] = o
measure_time('Constructed automaton with', len(states), 'states and', len(alphabet), 'symbols')
# Solver setup
vpool = IDPool()
solver = Solver(name=solver_name)
# mapping van variabeles: x_... -> x_i
def var(x):
return(vpool.id(('uio', x)))
# On place i we have symbol a
def avar(i, a):
return var(('a', i, a))
# Each state has its own path
# On path s, on place i, there is output o
def ovar(s, i, o):
return var(('o', s, i, o))
# On path s, we are in state t on place i
def svar(s, i, t):
return var(('s', s, i, t))
# Extra variable (a la Tseytin transformation)
# On path s, there is a difference on place i
def evar(s, i):
return var(('e', s, i))
# In order to re-use parts of the formula, we introduce
# enabling variables. These indicate the fixed state for which
# we want to compute an UIO. By changing these variables only, we
# can keep most of the formula the same and incrementally solve it.
# The fixed state is called the "base".
def bvar(s):
return var(('base', s))
# maakt de constraint dat precies een van de literals waar moet zijn
def unique(lits):
# deze werken goed: pairwise, seqcounter, bitwise, mtotalizer, kmtotalizer
# anderen geven groter aantal oplossingen
# alles behalve pairwise introduceert meer variabelen
cnf = CardEnc.equals(lits, 1, vpool=vpool, encoding=EncType.seqcounter)
solver.append_formula(cnf.clauses)
measure_time('Setup solver')
# Construction
# Guessing the word:
# variable x_('in', i, a) says: on place i there is an input a
for i in range(length):
unique([avar(i, a) for a in alphabet])
# We should only enable one base state (this allows for an optimisation later)
unique([bvar(base) for base in bases])
for s in tqdm(states, desc="simple stuff"):
for i in range(length):
# variable x_('out', s, i, a) says: on place i there is an output o of the path s
unique([ovar(s, i, o) for o in outputs])
if i == 0:
# The paths start in the corresponding state
# This could be used to reduce some variables, but I'm lazy now
solver.add_clause([svar(s, 0, s)])
else:
# variable x_('state', s, i, t) denotes the path through the automaton starting in s
unique([svar(s, i, t) for t in states])
# The path is consistent with the delta function
# The outputs correspond to the output along the path
# I have merged these loops, it was slightly faster
for s in tqdm(states, desc="paths & outputs"):
for i in range(length):
for t in states:
sv = svar(s, i, t)
for a in alphabet:
av = avar(i, a)
# We couple i with i+1, and so skip the last iteration
if i < length-1:
# x_('s', s, i, t) /\ x_('in', i, a) => x_('s', s, i+1, delta(t, a))
# == -x_('s', s, i, t) \/ -x_('in', i, a) \/ x_('s', s, i+1, delta(t, a))
next_t = delta[(t, a)]
solver.add_clause([-sv, -av, svar(s, i+1, next_t)])
# x_('s', state, i, t) /\ x_('in', i, a) => x_('o', i, labda(t, a))
# == -x_('s', state, i, t) \/ -x_('in', i, a) \/ x_('o', i, labda(t, a))
output = labda[(t, a)]
solver.add_clause([-sv, -av, ovar(s, i, output)])
# If(f) the output of a state is different than the one from our base state,
# then, we encode that in a new variable. This is only needed when the base
# state is active, so the first literal in these clauses is -bvar(base).
for s in tqdm(states, desc="diff1"):
for base in bases:
if s == base:
continue
bv = bvar(base)
for i in range(length):
for o in outputs:
# x_('o', state, i, o) /\ -x_('o', s, i, o) => x_('e', s, i)
# == -x_('o', state, i, o) \/ x_('o', s, i, o) \/ -x_('e', s, i)
solver.add_clause([-bv, -ovar(base, i, o), ovar(s, i, o), evar(s, i)])
# We also need the other direction, we can do this:
# x_('e', s, i) /\ x_('o', state, i, o) => -x_('o', s, i, o)
# == -x_('e', s, i) \/ -x_('o', state, i, o) \/ -x_('o', s, i, o)
solver.add_clause([-bv, -evar(s, i), -ovar(base, i, o), -ovar(s, i, o)])
# Now we have to say that the other state have some different output on their path
for s in tqdm(states, desc="diff2"):
# constraint: there is a place, such that there is a difference in output
# \/_i x_('e', s, i)
# If s is our base, we don't care
if s in bases:
solver.add_clause([bvar(s)] + [evar(s, i) for i in range(length)])
else:
solver.add_clause([evar(s, i) for i in range(length)])
measure_time('Constructed CNF with', solver.nof_clauses(), 'clauses and', solver.nof_vars(), 'variables')
# Solving
for s in bases:
print('*** UIO for state', s)
b = solver.solve(assumptions=[bvar(s)])
measure_time('Solver finished')
if b:
m = solver.get_model()
truth = set()
for l in m:
if l > 0:
truth.add(l)
print('! word')
for i in range(length):
for a in alphabet:
if avar(i, a) in truth:
print(a, end=' ')
print('')
if verbose:
print('! paths')
for s in states:
print(s, '=>', end=' ')
for i in range(length):
for t in states:
if svar(s, i, t) in truth:
print(t, end=' ')
print('')
print('! outputs')
for s in states:
print(s, '=>', end=' ')
for i in range(length):
for o in outputs:
if ovar(s, i, o) in truth:
print(o, end=' ')
print('')
print('! differences')
for s in states:
if s == base:
continue
print(s, '=>', end=' ')
for i in range(length):
if evar(s, i) in truth:
print('x', end='')
else:
print('.', end='')
print('')
else:
print('! no word')
core = solver.get_core()
print(core)