mirror of
https://github.com/Jaxan/satuio.git
synced 2025-04-27 14:47:46 +02:00
First(ish) version of the UIO solver
This commit is contained in:
parent
362ee1f589
commit
8b2750e07a
4 changed files with 45586 additions and 2 deletions
32
README.md
32
README.md
|
@ -1,2 +1,30 @@
|
||||||
# satuio
|
satuio
|
||||||
Using SAT solvers to construct UIOs and ADSs
|
======
|
||||||
|
|
||||||
|
Using SAT solvers to construct UIOs and ADSs for Mealy machines.
|
||||||
|
|
||||||
|
|
||||||
|
## Dependencies
|
||||||
|
|
||||||
|
This project uses Python. It uses the following packages which can be
|
||||||
|
installed with `pip`.
|
||||||
|
|
||||||
|
* pysat
|
||||||
|
* tqdm
|
||||||
|
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
(Note: this project is still WIP and the commands will change.)
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# <file> <length>
|
||||||
|
python3 uio.py examples/esm-0.dot 3
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## Copyright
|
||||||
|
|
||||||
|
© Joshua Moerman, Open Universiteit
|
||||||
|
|
||||||
|
|
||||||
|
|
45273
examples/esm-0.dot
Normal file
45273
examples/esm-0.dot
Normal file
File diff suppressed because it is too large
Load diff
48
examples/quic.dot
Normal file
48
examples/quic.dot
Normal file
|
@ -0,0 +1,48 @@
|
||||||
|
digraph g {
|
||||||
|
__start0 [label="" shape="none"];
|
||||||
|
|
||||||
|
s0 [shape="circle" label="0"];
|
||||||
|
s1 [shape="circle" label="1"];
|
||||||
|
s2 [shape="circle" label="2"];
|
||||||
|
s3 [shape="circle" label="3"];
|
||||||
|
s4 [shape="circle" label="4"];
|
||||||
|
s5 [shape="circle" label="5"];
|
||||||
|
s6 [shape="circle" label="6"];
|
||||||
|
s0 -> s1 [label="INIT-CHLO / REJ"];
|
||||||
|
s0 -> s0 [label="GET / PRST"];
|
||||||
|
s0 -> s0 [label="CLOSE / closed"];
|
||||||
|
s0 -> s0 [label="FULL-CHLO / PRST"];
|
||||||
|
s0 -> s1 [label="0RTT-CHLO / REJ"];
|
||||||
|
s1 -> s2 [label="INIT-CHLO / REJ"];
|
||||||
|
s1 -> s3 [label="GET / EXP"];
|
||||||
|
s1 -> s1 [label="CLOSE / closed"];
|
||||||
|
s1 -> s4 [label="FULL-CHLO / shlo"];
|
||||||
|
s1 -> s4 [label="0RTT-CHLO / shlo"];
|
||||||
|
s2 -> s2 [label="INIT-CHLO / REJ"];
|
||||||
|
s2 -> s2 [label="GET / EXP"];
|
||||||
|
s2 -> s2 [label="CLOSE / closed"];
|
||||||
|
s2 -> s2 [label="FULL-CHLO / EXP"];
|
||||||
|
s2 -> s4 [label="0RTT-CHLO / shlo"];
|
||||||
|
s3 -> s1 [label="INIT-CHLO / REJ"];
|
||||||
|
s3 -> s5 [label="GET / EXP"];
|
||||||
|
s3 -> s2 [label="CLOSE / closed"];
|
||||||
|
s3 -> s2 [label="FULL-CHLO / EXP"];
|
||||||
|
s3 -> s4 [label="0RTT-CHLO / shlo"];
|
||||||
|
s4 -> s1 [label="INIT-CHLO / REJ"];
|
||||||
|
s4 -> s2 [label="GET / http"];
|
||||||
|
s4 -> s6 [label="CLOSE / closed"];
|
||||||
|
s4 -> s2 [label="FULL-CHLO / EXP"];
|
||||||
|
s4 -> s4 [label="0RTT-CHLO / shlo"];
|
||||||
|
s5 -> s1 [label="INIT-CHLO / REJ"];
|
||||||
|
s5 -> s2 [label="GET / EXP"];
|
||||||
|
s5 -> s2 [label="CLOSE / closed"];
|
||||||
|
s5 -> s2 [label="FULL-CHLO / EXP"];
|
||||||
|
s5 -> s4 [label="0RTT-CHLO / shlo"];
|
||||||
|
s6 -> s1 [label="INIT-CHLO / REJ"];
|
||||||
|
s6 -> s6 [label="GET / PRST"];
|
||||||
|
s6 -> s6 [label="CLOSE / closed"];
|
||||||
|
s6 -> s6 [label="FULL-CHLO / PRST"];
|
||||||
|
s6 -> s4 [label="0RTT-CHLO / shlo"];
|
||||||
|
|
||||||
|
__start0 -> s0;
|
||||||
|
}
|
235
uio.py
Normal file
235
uio.py
Normal file
|
@ -0,0 +1,235 @@
|
||||||
|
from pysat.solvers import Solver
|
||||||
|
from pysat.formula import IDPool
|
||||||
|
from pysat.card import CardEnc, EncType
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
solver_name = 'g3'
|
||||||
|
verbose = True
|
||||||
|
|
||||||
|
start = time.time()
|
||||||
|
def measure_time(*str):
|
||||||
|
global start
|
||||||
|
now = time.time()
|
||||||
|
print('***', *str, "in %.3f seconds" % (now - start))
|
||||||
|
start = now
|
||||||
|
|
||||||
|
|
||||||
|
# Automaton
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('filename', help='File of the mealy machine (dot format)')
|
||||||
|
parser.add_argument('length', help="Length of the uio", type=int)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
length = args.length
|
||||||
|
|
||||||
|
alphabet = set()
|
||||||
|
outputs = set()
|
||||||
|
states = set()
|
||||||
|
bases = set(['s0', 's4', 's37', 's555'])
|
||||||
|
|
||||||
|
delta = {}
|
||||||
|
labda = {}
|
||||||
|
|
||||||
|
# Quick and dirty .dot parser
|
||||||
|
with open(args.filename) as file:
|
||||||
|
for line in file.readlines():
|
||||||
|
asdf = line.split()
|
||||||
|
if len(asdf) > 3 and asdf[1] == '->':
|
||||||
|
s = asdf[0]
|
||||||
|
t = asdf[2]
|
||||||
|
rest = ''.join(asdf[3:])
|
||||||
|
label = rest.split('"')[1]
|
||||||
|
[i, o] = label.split('/')
|
||||||
|
|
||||||
|
states.add(s)
|
||||||
|
states.add(t)
|
||||||
|
alphabet.add(i)
|
||||||
|
outputs.add(o)
|
||||||
|
|
||||||
|
delta[(s, i)] = t
|
||||||
|
labda[(s, i)] = o
|
||||||
|
|
||||||
|
measure_time('Constructed automaton with', len(states), 'states and', len(alphabet), 'symbols')
|
||||||
|
|
||||||
|
|
||||||
|
# Solver setup
|
||||||
|
|
||||||
|
vpool = IDPool()
|
||||||
|
solver = Solver(name=solver_name)
|
||||||
|
|
||||||
|
# mapping van variabeles: x_... -> x_i
|
||||||
|
def var(x):
|
||||||
|
return(vpool.id(('uio', x)))
|
||||||
|
|
||||||
|
# On place i we have symbol a
|
||||||
|
def avar(i, a):
|
||||||
|
return var(('a', i, a))
|
||||||
|
|
||||||
|
# Each state has its own path
|
||||||
|
# On path s, on place i, there is output o
|
||||||
|
def ovar(s, i, o):
|
||||||
|
return var(('o', s, i, o))
|
||||||
|
|
||||||
|
# On path s, we are in state t on place i
|
||||||
|
def svar(s, i, t):
|
||||||
|
return var(('s', s, i, t))
|
||||||
|
|
||||||
|
# Extra variable (a la Tseytin transformation)
|
||||||
|
# On path s, there is a difference on place i
|
||||||
|
def evar(s, i):
|
||||||
|
return var(('e', s, i))
|
||||||
|
|
||||||
|
# In order to re-use parts of the formula, we introduce
|
||||||
|
# enabling variables. These indicate the fixed state for which
|
||||||
|
# we want to compute an UIO. By changing these variables only, we
|
||||||
|
# can keep most of the formula the same and incrementally solve it.
|
||||||
|
# The fixed state is called the "base".
|
||||||
|
def bvar(s):
|
||||||
|
return var(('base', s))
|
||||||
|
|
||||||
|
# maakt de constraint dat precies een van de literals waar moet zijn
|
||||||
|
def unique(lits):
|
||||||
|
# deze werken goed: pairwise, seqcounter, bitwise, mtotalizer, kmtotalizer
|
||||||
|
# anderen geven groter aantal oplossingen
|
||||||
|
# alles behalve pairwise introduceert meer variabelen
|
||||||
|
cnf = CardEnc.equals(lits, 1, vpool=vpool, encoding=EncType.seqcounter)
|
||||||
|
solver.append_formula(cnf.clauses)
|
||||||
|
|
||||||
|
measure_time('Setup solver')
|
||||||
|
|
||||||
|
|
||||||
|
# Construction
|
||||||
|
|
||||||
|
# Guessing the word:
|
||||||
|
# variable x_('in', i, a) says: on place i there is an input a
|
||||||
|
for i in range(length):
|
||||||
|
unique([avar(i, a) for a in alphabet])
|
||||||
|
|
||||||
|
# We should only enable one base state (this allows for an optimisation later)
|
||||||
|
unique([bvar(base) for base in bases])
|
||||||
|
|
||||||
|
for s in tqdm(states, desc="simple stuff"):
|
||||||
|
for i in range(length):
|
||||||
|
# variable x_('out', s, i, a) says: on place i there is an output o of the path s
|
||||||
|
unique([ovar(s, i, o) for o in outputs])
|
||||||
|
|
||||||
|
if i == 0:
|
||||||
|
# The paths start in the corresponding state
|
||||||
|
# This could be used to reduce some variables, but I'm lazy now
|
||||||
|
solver.add_clause([svar(s, 0, s)])
|
||||||
|
else:
|
||||||
|
# variable x_('state', s, i, t) denotes the path through the automaton starting in s
|
||||||
|
unique([svar(s, i, t) for t in states])
|
||||||
|
|
||||||
|
# The path is consistent with the delta function
|
||||||
|
# The outputs correspond to the output along the path
|
||||||
|
# I have merged these loops, it was slightly faster
|
||||||
|
for s in tqdm(states, desc="paths & outputs"):
|
||||||
|
for i in range(length):
|
||||||
|
for t in states:
|
||||||
|
sv = svar(s, i, t)
|
||||||
|
for a in alphabet:
|
||||||
|
av = avar(i, a)
|
||||||
|
# We couple i with i+1, and so skip the last iteration
|
||||||
|
if i < length-1:
|
||||||
|
# x_('s', s, i, t) /\ x_('in', i, a) => x_('s', s, i+1, delta(t, a))
|
||||||
|
# == -x_('s', s, i, t) \/ -x_('in', i, a) \/ x_('s', s, i+1, delta(t, a))
|
||||||
|
next_t = delta[(t, a)]
|
||||||
|
solver.add_clause([-sv, -av, svar(s, i+1, next_t)])
|
||||||
|
|
||||||
|
# x_('s', state, i, t) /\ x_('in', i, a) => x_('o', i, labda(t, a))
|
||||||
|
# == -x_('s', state, i, t) \/ -x_('in', i, a) \/ x_('o', i, labda(t, a))
|
||||||
|
output = labda[(t, a)]
|
||||||
|
solver.add_clause([-sv, -av, ovar(s, i, output)])
|
||||||
|
|
||||||
|
# If(f) the output of a state is different than the one from our base state,
|
||||||
|
# then, we encode that in a new variable. This is only needed when the base
|
||||||
|
# state is active, so the first literal in these clauses is -bvar(base).
|
||||||
|
for s in tqdm(states, desc="diff1"):
|
||||||
|
for base in bases:
|
||||||
|
if s == base:
|
||||||
|
continue
|
||||||
|
bv = bvar(base)
|
||||||
|
for i in range(length):
|
||||||
|
for o in outputs:
|
||||||
|
# x_('o', state, i, o) /\ -x_('o', s, i, o) => x_('e', s, i)
|
||||||
|
# == -x_('o', state, i, o) \/ x_('o', s, i, o) \/ -x_('e', s, i)
|
||||||
|
solver.add_clause([-bv, -ovar(base, i, o), ovar(s, i, o), evar(s, i)])
|
||||||
|
|
||||||
|
# We also need the other direction, we can do this:
|
||||||
|
# x_('e', s, i) /\ x_('o', state, i, o) => -x_('o', s, i, o)
|
||||||
|
# == -x_('e', s, i) \/ -x_('o', state, i, o) \/ -x_('o', s, i, o)
|
||||||
|
solver.add_clause([-bv, -evar(s, i), -ovar(base, i, o), -ovar(s, i, o)])
|
||||||
|
|
||||||
|
# Now we have to say that the other state have some different output on their path
|
||||||
|
for s in tqdm(states, desc="diff2"):
|
||||||
|
# constraint: there is a place, such that there is a difference in output
|
||||||
|
# \/_i x_('e', s, i)
|
||||||
|
# If s is our base, we don't care
|
||||||
|
if s in bases:
|
||||||
|
solver.add_clause([bvar(s)] + [evar(s, i) for i in range(length)])
|
||||||
|
else:
|
||||||
|
solver.add_clause([evar(s, i) for i in range(length)])
|
||||||
|
|
||||||
|
measure_time('Constructed CNF with', solver.nof_clauses(), 'clauses and', solver.nof_vars(), 'variables')
|
||||||
|
|
||||||
|
|
||||||
|
# Solving
|
||||||
|
|
||||||
|
for s in bases:
|
||||||
|
print('*** UIO for state', s)
|
||||||
|
b = solver.solve(assumptions=[bvar(s)])
|
||||||
|
measure_time('Solver finished')
|
||||||
|
|
||||||
|
if b:
|
||||||
|
m = solver.get_model()
|
||||||
|
truth = set()
|
||||||
|
for l in m:
|
||||||
|
if l > 0:
|
||||||
|
truth.add(l)
|
||||||
|
|
||||||
|
print('! word')
|
||||||
|
for i in range(length):
|
||||||
|
for a in alphabet:
|
||||||
|
if avar(i, a) in truth:
|
||||||
|
print(a, end=' ')
|
||||||
|
print('')
|
||||||
|
|
||||||
|
if verbose:
|
||||||
|
print('! paths')
|
||||||
|
for s in states:
|
||||||
|
print(s, '=>', end=' ')
|
||||||
|
for i in range(length):
|
||||||
|
for t in states:
|
||||||
|
if svar(s, i, t) in truth:
|
||||||
|
print(t, end=' ')
|
||||||
|
print('')
|
||||||
|
|
||||||
|
print('! outputs')
|
||||||
|
for s in states:
|
||||||
|
print(s, '=>', end=' ')
|
||||||
|
for i in range(length):
|
||||||
|
for o in outputs:
|
||||||
|
if ovar(s, i, o) in truth:
|
||||||
|
print(o, end=' ')
|
||||||
|
print('')
|
||||||
|
|
||||||
|
print('! differences')
|
||||||
|
for s in states:
|
||||||
|
if s == base:
|
||||||
|
continue
|
||||||
|
print(s, '=>', end=' ')
|
||||||
|
for i in range(length):
|
||||||
|
if evar(s, i) in truth:
|
||||||
|
print('x', end='')
|
||||||
|
else:
|
||||||
|
print('.', end='')
|
||||||
|
print('')
|
||||||
|
|
||||||
|
else:
|
||||||
|
print('! no word')
|
||||||
|
core = solver.get_core()
|
||||||
|
print(core)
|
Loading…
Add table
Reference in a new issue