mirror of
https://github.com/Jaxan/satuio.git
synced 2025-04-27 14:47:46 +02:00
Add more comments and clean up a bit
This commit is contained in:
parent
2dd1c1a2a4
commit
9e0132e2e8
1 changed files with 58 additions and 33 deletions
91
uio.py
91
uio.py
|
@ -8,7 +8,6 @@ from tqdm import tqdm # Import fancy progress bars
|
|||
from rich.console import Console # Import colorized output
|
||||
|
||||
solver_name = 'g3'
|
||||
verbose = True
|
||||
|
||||
start = time.time()
|
||||
start_total = start
|
||||
|
@ -23,10 +22,13 @@ def measure_time(*str):
|
|||
# Reading the input
|
||||
# *****************
|
||||
|
||||
# command line options
|
||||
# TODO: find a way to read the base states
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('filename', help='File of the mealy machine (dot format)')
|
||||
parser.add_argument('length', help="Length of the uio", type=int)
|
||||
parser.add_argument('-v', '--verbose', help="Show more output", action="store_true")
|
||||
parser.add_argument('--solver', help="Which solver to use (default g3)", default='g3')
|
||||
args = parser.parse_args()
|
||||
|
||||
length = args.length
|
||||
|
@ -65,30 +67,39 @@ measure_time('Constructed automaton with', len(states), 'states and', len(alphab
|
|||
|
||||
# ********************
|
||||
# Seting up the solver
|
||||
# And the variables
|
||||
# ********************
|
||||
|
||||
vpool = IDPool()
|
||||
solver = Solver(name=solver_name)
|
||||
solver = Solver(name=args.solver)
|
||||
|
||||
# mapping van variabeles: x_... -> x_i
|
||||
# Since the solver can only deal with variables x_i, we need
|
||||
# a mapping of variabeles: x_whatever -> x_i.
|
||||
# We use the IDPool of pysat for this. It generates variables
|
||||
# on the fly.
|
||||
def var(x):
|
||||
return(vpool.id(('uio', x)))
|
||||
|
||||
# On place i we have symbol a
|
||||
# Variables for the guessed word
|
||||
# avar(i, a) means: on place i there is symbol a
|
||||
def avar(i, a):
|
||||
return var(('a', i, a))
|
||||
|
||||
# Each state has its own path
|
||||
# On path s, on place i, there is output o
|
||||
def ovar(s, i, o):
|
||||
return var(('o', s, i, o))
|
||||
|
||||
# On path s, we are in state t on place i
|
||||
# Each state has its own path, and on this path we encode
|
||||
# states and outputs
|
||||
# svar(s, i, t) means: on path s, at place i, we are in state t
|
||||
def svar(s, i, t):
|
||||
return var(('s', s, i, t))
|
||||
|
||||
# Extra variable (a la Tseytin transformation)
|
||||
# On path s, there is a difference on place i
|
||||
# ovar(s, i, o) means: on path s, on place i, there is output o
|
||||
def ovar(s, i, o):
|
||||
return var(('o', s, i, o))
|
||||
|
||||
# We use extra variables to encode the fact that there is
|
||||
# a difference in output (a la Tseytin transformation)
|
||||
# evar(s, i) means: on path s, on place i, there is a difference
|
||||
# in output. Note: the converse (if there is a difference
|
||||
# evar(s, i) is true) does not hold!
|
||||
def evar(s, i):
|
||||
return var(('e', s, i))
|
||||
|
||||
|
@ -97,18 +108,18 @@ def evar(s, i):
|
|||
# we want to compute an UIO. By changing these variables only, we
|
||||
# can keep most of the formula the same and incrementally solve it.
|
||||
# The fixed state is called the "base".
|
||||
# bvar(s) means: s is the base.
|
||||
def bvar(s):
|
||||
return var(('base', s))
|
||||
|
||||
# maakt de constraint dat precies een van de literals waar moet zijn
|
||||
# We often need to assert that exacly one variable in a list holds.
|
||||
# For that we use pysat's cardinality encoding. This might introduce
|
||||
# additional variables. But that does not matter for us.
|
||||
def unique(lits):
|
||||
# deze werken goed: pairwise, seqcounter, bitwise, mtotalizer, kmtotalizer
|
||||
# anderen geven groter aantal oplossingen
|
||||
# alles behalve pairwise introduceert meer variabelen
|
||||
cnf = CardEnc.equals(lits, 1, vpool=vpool, encoding=EncType.seqcounter)
|
||||
solver.append_formula(cnf.clauses)
|
||||
|
||||
measure_time('Setup solver')
|
||||
measure_time('Setup solver', args.solver)
|
||||
|
||||
|
||||
# ********************
|
||||
|
@ -116,16 +127,17 @@ measure_time('Setup solver')
|
|||
# ********************
|
||||
|
||||
# Guessing the word:
|
||||
# variable x_('in', i, a) says: on place i there is an input a
|
||||
for i in range(length):
|
||||
unique([avar(i, a) for a in alphabet])
|
||||
|
||||
# We should only enable one base state (this allows for an optimisation later)
|
||||
# We should only enable one base state.
|
||||
# (This allows for an optimisation later.)
|
||||
unique([bvar(base) for base in bases])
|
||||
|
||||
|
||||
# For each state s, we construct a path of possible successor states,
|
||||
# following the guessed word. This path should be consistent with delta,
|
||||
# and we also record the outputs along this path. The output are later
|
||||
# and we also record the outputs along this path. The outputs are later
|
||||
# used to decide whether we found a different output.
|
||||
possible_outputs = {}
|
||||
for s in tqdm(states, desc="CNF paths"):
|
||||
|
@ -135,8 +147,8 @@ for s in tqdm(states, desc="CNF paths"):
|
|||
next_set = set()
|
||||
|
||||
for i in range(length):
|
||||
# Only one successor state should be enable (probably redundant)
|
||||
# For i == 0, this is a single state (namely s)
|
||||
# Only one successor state should be enabled (this clause is
|
||||
# probably redundant). For i == 0, this is a single state (s).
|
||||
unique([svar(s, i, t) for t in current_set])
|
||||
|
||||
# We keep track of the possible outputs
|
||||
|
@ -151,9 +163,9 @@ for s in tqdm(states, desc="CNF paths"):
|
|||
output = labda[(t, a)]
|
||||
possible_outputs[(s, i)].add(output)
|
||||
|
||||
# Constraint: when in state t and input a, we output o
|
||||
# x_('s', state, i, t) /\ x_('in', i, a) => x_('o', i, labda(t, a))
|
||||
# == -x_('s', state, i, t) \/ -x_('in', i, a) \/ x_('o', i, labda(t, a))
|
||||
# Constraint: on path s, when in state t and input a, we output o
|
||||
# x_('s', s, i, t) /\ x_('in', i, a) => x_('o', i, labda(t, a))
|
||||
# == -x_('s', s, i, t) \/ -x_('in', i, a) \/ x_('o', i, labda(t, a))
|
||||
solver.add_clause([-sv, -av, ovar(s, i, output)])
|
||||
|
||||
# when i == length-1 we don't need to consider successors
|
||||
|
@ -161,13 +173,12 @@ for s in tqdm(states, desc="CNF paths"):
|
|||
next_t = delta[(t, a)]
|
||||
next_set.add(next_t)
|
||||
|
||||
# Constraint: when in state t and input a, we go to next_t
|
||||
# Constraint: on path s, when in state t and input a, we go to next_t
|
||||
# x_('s', s, i, t) /\ x_('in', i, a) => x_('s', s, i+1, delta(t, a))
|
||||
# == -x_('s', s, i, t) \/ -x_('in', i, a) \/ x_('s', s, i+1, delta(t, a))
|
||||
solver.add_clause([-sv, -av, svar(s, i+1, next_t)])
|
||||
|
||||
# Only one output should be enabled
|
||||
# variable x_('out', s, i, a) says: on place i there is an output o of the path s
|
||||
unique([ovar(s, i, o) for o in possible_outputs[(s, i)]])
|
||||
|
||||
# Next iteration with successor states
|
||||
|
@ -175,13 +186,17 @@ for s in tqdm(states, desc="CNF paths"):
|
|||
next_set = set()
|
||||
|
||||
|
||||
# If(f) the output of a state is different than the one from our base state,
|
||||
# If the output of a state is different than the one from our base state,
|
||||
# then, we encode that in a new variable. This is only needed when the base
|
||||
# state is active, so the first literal in these clauses is -bvar(base).
|
||||
# Also note, we only encode the converse: if there is a difference claimed
|
||||
# and base has a certain output, than the state should not have that output.
|
||||
# This means that the solver doesn't report all differences, but at least one.
|
||||
for s in tqdm(states, desc="CNF diffs"):
|
||||
# Constraint: there is a place, such that there is a difference in output
|
||||
# \/_i x_('e', s, i)
|
||||
# If s is our base, we don't care
|
||||
# If s is our base, we don't care (this can be done, because only
|
||||
# a single bvar is true).
|
||||
if s in bases:
|
||||
solver.add_clause([bvar(s)] + [evar(s, i) for i in range(length)])
|
||||
else:
|
||||
|
@ -198,7 +213,7 @@ for s in tqdm(states, desc="CNF diffs"):
|
|||
outputs_base = possible_outputs[(base, i)]
|
||||
outputs_s = possible_outputs[(s, i)]
|
||||
|
||||
# We encode, if the base is enabled and there is a difference,
|
||||
# We encode: if the base is enabled and there is a difference,
|
||||
# then the outputs should actually differ. (We do not have to
|
||||
# encode the other implication!)
|
||||
# x_('b', base) /\ x_('e', s, i) /\ x_('o', base, i, o) => -x_('o', s, i, o)
|
||||
|
@ -207,7 +222,6 @@ for s in tqdm(states, desc="CNF diffs"):
|
|||
if o in outputs_s:
|
||||
solver.add_clause([-bv, -evar(s, i), -ovar(base, i, o), -ovar(s, i, o)])
|
||||
|
||||
|
||||
measure_time('Constructed CNF with', solver.nof_clauses(), 'clauses and', solver.nof_vars(), 'variables')
|
||||
|
||||
|
||||
|
@ -215,25 +229,35 @@ measure_time('Constructed CNF with', solver.nof_clauses(), 'clauses and', solver
|
|||
# Solving and output
|
||||
# ******************
|
||||
|
||||
# We set up some things for nice output
|
||||
console = Console(markup=False, highlight=False)
|
||||
max_state_length = max([len(str) for str in states])
|
||||
|
||||
# We count the number of uios
|
||||
num_uios = {True: 0, False: 0}
|
||||
|
||||
# We want to find an UIO for each base. We have already constructed
|
||||
# the CNF. So it remains to add assumptions to the solver, this is
|
||||
# called "incremental solving" in SAT literature.
|
||||
for base in bases:
|
||||
console.print('')
|
||||
console.print('*** UIO for state', base, style='bold blue')
|
||||
|
||||
# Solve with bvar(base) being true
|
||||
b = solver.solve(assumptions=[bvar(base)])
|
||||
num_uios[b] = num_uios[b] + 1
|
||||
measure_time('Solver finished')
|
||||
|
||||
if b:
|
||||
# We get the model, and store all true variables
|
||||
# in a set, for easy lookup.
|
||||
m = solver.get_model()
|
||||
truth = set()
|
||||
for l in m:
|
||||
if l > 0:
|
||||
truth.add(l)
|
||||
|
||||
# We print the word
|
||||
console.print('! UIO of length', length, style='bold green')
|
||||
for i in range(length):
|
||||
for a in alphabet:
|
||||
|
@ -241,7 +265,7 @@ for base in bases:
|
|||
console.print(a, end=' ', style='bold green')
|
||||
console.print('')
|
||||
|
||||
# For each state, we print the paths and output.
|
||||
# (If verbose) For each state, we print the paths and output.
|
||||
# We mark the differences red (there can be differences not
|
||||
# marked, these are the differences decided in the solving).
|
||||
if args.verbose:
|
||||
|
@ -266,10 +290,11 @@ for base in bases:
|
|||
|
||||
else:
|
||||
console.print('! no UIO of length', length, style='bold red')
|
||||
core = solver.get_core()
|
||||
# The core returned by the solver is not interesting:
|
||||
# It is only the assumption (i.e. bvar).
|
||||
|
||||
|
||||
# Report some final stats
|
||||
start = start_total
|
||||
print('')
|
||||
measure_time("Done with total time")
|
||||
|
|
Loading…
Add table
Reference in a new issue