Browse Source

Initial commit

master
Joshua Moerman 7 years ago
commit
4ceb2dbc70
  1. 7
      README.md
  2. 214
      main.cpp
  3. BIN
      render1.png
  4. 2073
      test.svg

7
README.md

@ -0,0 +1,7 @@
Tilings of the plane with triangles ...
=======================================
... of equal area, bounded perimenter and all non-congruent. Here, I try to
implement the procedure from a paper by Andrey Kupavskii, János Pach and Gábor
Tardos. It is not correct. I interpret generic as random, is probably fine for
this gimmick. [ArXiv article](https://arxiv.org/pdf/1712.03118.pdf)

214
main.cpp

@ -0,0 +1,214 @@
#include <random>
#include <cmath>
#include <queue>
#include <iostream>
using namespace std;
using ld = long double;
struct pt {
ld x = 0, y = 0;
};
constexpr pt zero = pt{0, 0};
pt operator+(pt a, pt b) {
a.x += b.x;
a.y += b.y;
return a;
}
pt operator-(pt a, pt b) {
a.x -= b.x;
a.y -= b.y;
return a;
}
pt operator*(ld s, pt p) {
p.x *= s;
p.y *= s;
return p;
}
ld dot(pt a, pt b) {
return a.x * b.x + a.y * b.y;
}
ld normsqr(pt a) {
return dot(a, a);
}
ld lensqr(pt a, pt b) {
return normsqr(b - a);
}
ld norm(pt a) {
return sqrt(normsqr(a));
}
struct cone {
pt p1, d1;
pt p2, d2;
};
struct cone_d {
ld d;
cone c;
cone_d(cone const & co) : c(co) {
// TODO: proper point line segment distance
d = min(normsqr(c.p1), normsqr(c.p2));
}
};
bool operator<(cone_d const & lhs, cone_d const & rhs) {
return lhs.d > rhs.d;
}
// two points and a direction from p2
// returns x such that
ld unit_triangle(pt p1, pt p2, pt d2) {
const auto d1 = p1 - p2;
// from https://en.wikipedia.org/wiki/Triangle#Using_coordinates
// 1 = area = 1/2 * abs(x * d2.x * d1.y - x * d1.x * d2.y)
// 2 = x * abs(d2.x * d1.y - d1.x * d2.y)
// 2 / abs(d2.x * d1.y - d1.x * d2.y) = x
const auto x = 2.0 / abs(d2.x * d1.y - d1.x * d2.y);
return x;
}
int main() {
mt19937 gen(random_device{}());
// This is used for the starting triangles
uniform_real_distribution<ld> dist(0.8, 1.6);
uniform_real_distribution<ld> unif01(0, 1);
// the three starting rays
pt c1 = {0, 1};
pt c2 = { sqrt(3) / 2.0, -0.5};
pt c3 = {-sqrt(3) / 2.0, -0.5};
// and the random triangles attached to them
pt p12a = dist(gen) * c1;
pt p12b = unit_triangle(p12a, {0, 0}, c2) * c2;
cone c12{p12a, c1, p12b, c2};
pt p23a = dist(gen) * c2;
pt p23b = unit_triangle(p23a, {0, 0}, c3) * c3;
cone c23{p23a, c2, p23b, c3};
pt p31a = dist(gen) * c3;
pt p31b = unit_triangle(p31a, {0, 0}, c1) * c1;
cone c31{p31a, c3, p31b, c1};
// we keep track of all lines in the construction
vector<pair<pt, pt>> rays;
rays.emplace_back(zero, c1);
rays.emplace_back(zero, c2);
rays.emplace_back(zero, c3);
vector<pair<pt, pt>> lines;
lines.emplace_back(p12a, p12b);
lines.emplace_back(p23a, p23b);
lines.emplace_back(p31a, p31b);
// I use a priority queue to pick the closest cone
priority_queue<cone_d> work;
work.push(c12);
work.push(c23);
work.push(c31);
// we pick the closest cone to expand
while(!work.empty() && lines.size() < 2000) {
auto c = work.top().c;
work.pop();
// one quadrant is enough for me
if((c.p1.x < -4 && c.p2.x < -4) || (c.p1.y < -4 && c.p2.y < -4))
continue;
// split or not?
if (lensqr(c.p1, c.p2) > 16) {
// choose midpoint on c.p2 - c.p1
// such that both are length >= 2
// choose direction such that we get two cones
// The two pow(-) functions skew the distribution,
// you can artistically choose something here.
const auto l = sqrt(lensqr(c.p1, c.p2));
const auto wiggle = l - 4;
const auto r0 = unif01(gen);
const auto r = 2.0 / l + pow(r0, 1.5) * wiggle / l;
const auto pm = (1.0 - r) * c.p1 + r * c.p2;
const auto r20 = unif01(gen);
const auto r2 = 0.001 + 0.998 * pow(r20, 1.2);
const auto dm = r2 * c.d1 + (1.0 - r2) * c.d2;
rays.emplace_back(pm, dm);
cone c1{c.p1, c.d1, pm, dm};
cone c2{pm, dm, c.p2, c.d2};
work.push(c1);
work.push(c2);
} else {
// try the two triangles and see which one fits the bill
const auto x1 = unit_triangle(c.p2, c.p1, c.d1);
const auto x2 = unit_triangle(c.p1, c.p2, c.d2);
const auto p1b = c.p1 + x1 * c.d1;
const auto p2b = c.p2 + x2 * c.d2;
// Here I do not follow the paper correctly. I should pick the
// new cone with angles at most bla bla bla. Instead, I choose
// the one with a shorter edge, sounds fine to me. I reintroduce
// some randomness for artistic reasons. Increase 20 for wild
// results.
if (lensqr(c.p1, p2b) + 20*unif01(gen) < lensqr(p1b, c.p2) + 20*unif01(gen)) {
cone c2{c.p1, c.d1, p2b, c.d2};
work.push(c2);
lines.emplace_back(c.p1, p2b);
} else {
cone c2{p1b, c.d1, c.p2, c.d2};
work.push(c2);
lines.emplace_back(p1b, c.p2);
}
}
}
// the print an svg attribute
const auto p = [](auto str, auto v) {
cout << ' ' << str << "=\"" << v << "\"";
};
// I roughly estimate the maximal distance from zero
ld max_l = 0;
shuffle(lines.begin(), lines.end(), gen);
cout << "<svg>\n";
for(auto && l : lines) {
max_l = 0.5 * max_l + 0.5 * max(max_l, max(norm(l.first), norm(l.second)));
cout << "<line";
p("x1", l.first.x);
p("y1", l.first.y);
p("x2", l.second.x);
p("y2", l.second.y);
p("style", "stroke:#000;stroke-width:0.1");
cout << "/>\n";
}
for(auto && l : rays) {
const auto p1 = l.first;
const auto l_left = max(ld(1.0), max_l - norm(p1));
const auto p2 = p1 + (l_left / norm(l.second)) * l.second;
cout << "<line";
p("x1", p1.x);
p("y1", p1.y);
p("x2", p2.x);
p("y2", p2.y);
p("style", "stroke:#000;stroke-width:0.1");
cout << "/>\n";
}
cout << "</svg>" << endl;
}

BIN
render1.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 997 KiB

2073
test.svg

File diff suppressed because it is too large

After

Width:  |  Height:  |  Size: 196 KiB

Loading…
Cancel
Save