@ -95,7 +95,7 @@ Note that indeed $\Hom{\DELTA}{X}{[n]} \in \Set$, because the collection of morp
\begin{example}
\begin{example}
We will compute how $\Delta[0]$ look like. Note that $[0]$ is an one-element set, so for any set $X$, there is only one function $\ast : X \to[0]$. Hence $\Delta[0]_n =\{\ast\}$ for all $n$. The face and degeneracy maps are now functions from $\{\ast\}$ to $\{\ast\}$. Again there is only one, namely $\id : \{\ast\}\to\{\ast\}$. This gives:
We will compute how $\Delta[0]$ look like. Note that $[0]$ is an one-element set, so for any set $X$, there is only one function $\ast : X \to[0]$. Hence $\Delta[0]_n =\{\ast\}$ for all $n$. The face and degeneracy maps are now functions from $\{\ast\}$ to $\{\ast\}$. Again there is only one, namely $\id : \{\ast\}\to\{\ast\}$. This gives:
As we are interested in simplicial abelian group, it would be nice to make these $n$-simplices into simplicial abelian groups. We have seen how to make an abelian group out of any set using the free abelian group. We can use this functor $\Z[-] : \Set\to\Ab$ to induce a functor $\Z^\ast[-] : \sSet\to\sAb$ as shown in the diagram~\ref{fig:diagram_Z}.
As we are interested in simplicial abelian group, it would be nice to make these $n$-simplices into simplicial abelian groups. We have seen how to make an abelian group out of any set using the free abelian group. We can use this functor $\Z[-] : \Set\to\Ab$ to induce a functor $\Z^\ast[-] : \sSet\to\sAb$ as shown in the diagram~\ref{fig:diagram_Z}.