All the slides for the presentation, should make pictures now
This commit is contained in:
parent
2835136e88
commit
9815c145c5
1 changed files with 63 additions and 23 deletions
|
@ -1,47 +1,87 @@
|
||||||
\documentclass[14pt]{beamer}
|
\documentclass[14pt]{beamer}
|
||||||
|
|
||||||
|
% beamer definieert 'definition' al, maar dan engels :(
|
||||||
|
% fix van:
|
||||||
|
% http://tex.stackexchange.com/questions/38392/how-to-rename-theorem-or-lemma-in-beamer-to-another-language
|
||||||
\usepackage[dutch]{babel}
|
\usepackage[dutch]{babel}
|
||||||
|
\uselanguage{dutch}
|
||||||
|
\languagepath{dutch}
|
||||||
|
\deftranslation[to=dutch]{Definition}{Definitie}
|
||||||
|
|
||||||
\input{../thesis/preamble}
|
\input{../thesis/preamble}
|
||||||
|
|
||||||
\title{Dold-Kan correspondentie}
|
\title{Dold-Kan correspondentie
|
||||||
|
\huge $$ \Ch{\cat{Ab}} \simeq \cat{sAb} $$}
|
||||||
\author{Joshua Moerman}
|
\author{Joshua Moerman}
|
||||||
\institute[Radboud Universiteit Nijmegen]{Begeleid door Moritz Groth}
|
\institute[Radboud Universiteit Nijmegen]{Begeleid door Moritz Groth}
|
||||||
\date{}
|
\date{}
|
||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
|
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
\titlepage
|
\titlepage
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
\begin{frame}
|
|
||||||
\frametitle{Dold-Kan Correspondentie}
|
|
||||||
\huge $$ \cat{Ch(Ab)} \simeq \cat{sAb} $$
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\section{Ketencomplex}
|
|
||||||
\begin{frame}
|
|
||||||
\frametitle{Ketencomplex}
|
|
||||||
\begin{definition}
|
|
||||||
Een \emph{ketencomplex} $C$ bestaat uit abelse groepen $C_n$ en homomorfismes $\del_n : C_{n+1} \to C_n$, zodat $\del_n \circ \del_{n+1} = 0$ voor alle $n \in \N$.
|
|
||||||
\end{definition}
|
|
||||||
\pause
|
|
||||||
\bigskip
|
|
||||||
Met andere woorden:
|
|
||||||
$$ \cdots \to C_4 \to C_3 \to C_2 \to C_1 \to C_0 $$
|
|
||||||
\end{frame}
|
|
||||||
|
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
Uit $\del_n \circ \del_{n+1} = 0$ volgt $im(\del_{n+1}) \trianglelefteq ker(\del_n)$
|
\frametitle{Wat is $\Ch{\cat{Ab}}$?}
|
||||||
\pause
|
\begin{definition}
|
||||||
Definieer: $H_n(C) = ker(\del_n) / im(\del_{n+1})$
|
Een \emph{ketencomplex} $C$ bestaat uit abelse groepen met groepshomomorfisme:
|
||||||
|
$$ \cdots \to C_4 \to^{\del_3} C_3 \to^{\del_2} C_2 \to^{\del_1} C_1 \to^{\del_0} C_0 $$
|
||||||
|
|
||||||
|
zodat $\del_n \circ \del_{n+1} = 0$ voor alle $n \geq 1$.
|
||||||
|
\end{definition}
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
\begin{frame}
|
\begin{frame}
|
||||||
\begin{center}
|
\frametitle{Voorbeeld}
|
||||||
\Huge Vragen?
|
Bekijk $\Delta^n \to X$, dwz...
|
||||||
\end{center}
|
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{frame}
|
||||||
|
\frametitle{Is $\Ch{\cat{Ab}}$ interessant?}
|
||||||
|
Gegeven een ketencomplex $C$:
|
||||||
|
$$ \cdots \to C_4 \to^{\del_3} C_3 \to^{\del_2} C_2 \to^{\del_1} C_1 \to^{\del_0} C_0 $$
|
||||||
|
met $\del_n \circ \del_{n+1} = 0$
|
||||||
|
\bigskip
|
||||||
|
|
||||||
|
Dan geldt $im(\del_{n+1}) \trianglelefteq ker(\del_n)$
|
||||||
|
|
||||||
|
Definieer: $H_n(C) = ker(\del_n) / im(\del_{n+1})$
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{frame}
|
||||||
|
\frametitle{Voorbeeld}
|
||||||
|
$ \cdots \to C_1 \to^{\del_0} C_0 $, wat is $H_1 = ker(\del_0) / im(\del_1)$?
|
||||||
|
|
||||||
|
\begin{enumerate}
|
||||||
|
\item Triviaal
|
||||||
|
\item Niet triviaal
|
||||||
|
\end{enumerate}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{frame}
|
||||||
|
\frametitle{Dold-Kan Correspondentie}
|
||||||
|
\begin{center}
|
||||||
|
{\Large $ \Ch{\cat{Ab}} \simeq \cat{sAb} $}
|
||||||
|
|
||||||
|
verder:
|
||||||
|
{\Large $$ H_n(N(X)) \iso \pi_n(X) $$}
|
||||||
|
waarbij $N : \cat{sAb} \to \Ch{\cat{Ab}}$.
|
||||||
|
\end{center}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{frame}
|
||||||
|
\begin{center}
|
||||||
|
\Huge Vragen?
|
||||||
|
\end{center}
|
||||||
|
\end{frame}
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
Reference in a new issue