Joshua Moerman
12 years ago
1 changed files with 59 additions and 19 deletions
@ -1,47 +1,87 @@ |
|||
\documentclass[14pt]{beamer} |
|||
|
|||
% beamer definieert 'definition' al, maar dan engels :( |
|||
% fix van: |
|||
% http://tex.stackexchange.com/questions/38392/how-to-rename-theorem-or-lemma-in-beamer-to-another-language |
|||
\usepackage[dutch]{babel} |
|||
\uselanguage{dutch} |
|||
\languagepath{dutch} |
|||
\deftranslation[to=dutch]{Definition}{Definitie} |
|||
|
|||
\input{../thesis/preamble} |
|||
|
|||
\title{Dold-Kan correspondentie} |
|||
\title{Dold-Kan correspondentie |
|||
\huge $$ \Ch{\cat{Ab}} \simeq \cat{sAb} $$} |
|||
\author{Joshua Moerman} |
|||
\institute[Radboud Universiteit Nijmegen]{Begeleid door Moritz Groth} |
|||
\date{} |
|||
|
|||
\begin{document} |
|||
|
|||
|
|||
\begin{frame} |
|||
\titlepage |
|||
\titlepage |
|||
\end{frame} |
|||
|
|||
|
|||
\begin{frame} |
|||
\frametitle{Dold-Kan Correspondentie} |
|||
\huge $$ \cat{Ch(Ab)} \simeq \cat{sAb} $$ |
|||
\frametitle{Wat is $\Ch{\cat{Ab}}$?} |
|||
\begin{definition} |
|||
Een \emph{ketencomplex} $C$ bestaat uit abelse groepen met groepshomomorfisme: |
|||
$$ \cdots \to C_4 \to^{\del_3} C_3 \to^{\del_2} C_2 \to^{\del_1} C_1 \to^{\del_0} C_0 $$ |
|||
|
|||
zodat $\del_n \circ \del_{n+1} = 0$ voor alle $n \geq 1$. |
|||
\end{definition} |
|||
\end{frame} |
|||
|
|||
\section{Ketencomplex} |
|||
|
|||
\begin{frame} |
|||
\frametitle{Ketencomplex} |
|||
\begin{definition} |
|||
Een \emph{ketencomplex} $C$ bestaat uit abelse groepen $C_n$ en homomorfismes $\del_n : C_{n+1} \to C_n$, zodat $\del_n \circ \del_{n+1} = 0$ voor alle $n \in \N$. |
|||
\end{definition} |
|||
\pause |
|||
\bigskip |
|||
Met andere woorden: |
|||
$$ \cdots \to C_4 \to C_3 \to C_2 \to C_1 \to C_0 $$ |
|||
\frametitle{Voorbeeld} |
|||
Bekijk $\Delta^n \to X$, dwz... |
|||
\end{frame} |
|||
|
|||
|
|||
\begin{frame} |
|||
Uit $\del_n \circ \del_{n+1} = 0$ volgt $im(\del_{n+1}) \trianglelefteq ker(\del_n)$ |
|||
\pause |
|||
Definieer: $H_n(C) = ker(\del_n) / im(\del_{n+1})$ |
|||
\frametitle{Is $\Ch{\cat{Ab}}$ interessant?} |
|||
Gegeven een ketencomplex $C$: |
|||
$$ \cdots \to C_4 \to^{\del_3} C_3 \to^{\del_2} C_2 \to^{\del_1} C_1 \to^{\del_0} C_0 $$ |
|||
met $\del_n \circ \del_{n+1} = 0$ |
|||
\bigskip |
|||
|
|||
Dan geldt $im(\del_{n+1}) \trianglelefteq ker(\del_n)$ |
|||
|
|||
Definieer: $H_n(C) = ker(\del_n) / im(\del_{n+1})$ |
|||
\end{frame} |
|||
|
|||
|
|||
\begin{frame} |
|||
\begin{center} |
|||
\Huge Vragen? |
|||
\end{center} |
|||
\frametitle{Voorbeeld} |
|||
$ \cdots \to C_1 \to^{\del_0} C_0 $, wat is $H_1 = ker(\del_0) / im(\del_1)$? |
|||
|
|||
\begin{enumerate} |
|||
\item Triviaal |
|||
\item Niet triviaal |
|||
\end{enumerate} |
|||
\end{frame} |
|||
|
|||
|
|||
\begin{frame} |
|||
\frametitle{Dold-Kan Correspondentie} |
|||
\begin{center} |
|||
{\Large $ \Ch{\cat{Ab}} \simeq \cat{sAb} $} |
|||
|
|||
verder: |
|||
{\Large $$ H_n(N(X)) \iso \pi_n(X) $$} |
|||
waarbij $N : \cat{sAb} \to \Ch{\cat{Ab}}$. |
|||
\end{center} |
|||
\end{frame} |
|||
|
|||
|
|||
\begin{frame} |
|||
\begin{center} |
|||
\Huge Vragen? |
|||
\end{center} |
|||
\end{frame} |
|||
|
|||
|
|||
\end{document} |
|||
|
Reference in new issue