Bachelor thesis about the Dold-Kan correspondence https://github.com/Jaxan/Dold-Kan
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 

47 lines
1006 B

\documentclass[14pt]{beamer}
\usepackage[dutch]{babel}
\input{../thesis/preamble}
\title{Dold-Kan correspondentie}
\author{Joshua Moerman}
\institute[Radboud Universiteit Nijmegen]{Begeleid door Moritz Groth}
\date{}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Dold-Kan Correspondentie}
\huge $$ \cat{Ch(Ab)} \simeq \cat{sAb} $$
\end{frame}
\section{Ketencomplex}
\begin{frame}
\frametitle{Ketencomplex}
\begin{definition}
Een \emph{ketencomplex} $C$ bestaat uit abelse groepen $C_n$ en homomorfismes $\del_n : C_{n+1} \to C_n$, zodat $\del_n \circ \del_{n+1} = 0$ voor alle $n \in \N$.
\end{definition}
\pause
\bigskip
Met andere woorden:
$$ \cdots \to C_4 \to C_3 \to C_2 \to C_1 \to C_0 $$
\end{frame}
\begin{frame}
Uit $\del_n \circ \del_{n+1} = 0$ volgt $im(\del_{n+1}) \trianglelefteq ker(\del_n)$
\pause
Definieer: $H_n(C) = ker(\del_n) / im(\del_{n+1})$
\end{frame}
\begin{frame}
\begin{center}
\Huge Vragen?
\end{center}
\end{frame}
\end{document}