1
Fork 0
mirror of https://github.com/Jaxan/hybrid-ads.git synced 2025-04-27 15:07:45 +02:00

Refactors the dist_seq to distinguishing_sequence

This commit is contained in:
Joshua Moerman 2015-02-27 15:57:04 +01:00
parent 4a2bc674cc
commit a7a7f815da
8 changed files with 112 additions and 112 deletions

View file

@ -1,23 +0,0 @@
#pragma once
#include "mealy.hpp"
#include <vector>
#include <utility>
struct dist_seq {
dist_seq(size_t N, size_t depth)
: CI(N)
, depth(depth)
{
for(size_t i = 0; i < N; ++i)
CI[i] = {i, i};
}
// current, initial
std::vector<std::pair<state, state>> CI;
std::vector<input> word;
std::vector<dist_seq> children;
size_t depth;
};

View file

@ -1,79 +1,75 @@
#include "create_adaptive_distinguishing_sequence.hpp"
#include "splitting_tree.hpp"
#include "create_splitting_tree.hpp"
#include <algorithm>
#include <cassert>
#include <functional>
#include <queue>
#include <vector>
using namespace std;
result2 create_adaptive_distinguishing_sequence(const result & splitting_tree){
distinguishing_sequence create_adaptive_distinguishing_sequence(const result & splitting_tree){
const auto & root = splitting_tree.root;
const auto & succession = splitting_tree.successor_cache;
const auto N = root.states.size();
result2 r(N);
auto & root_seq = r.sequence;
distinguishing_sequence sequence(N, 0);
{
queue<reference_wrapper<dist_seq>> work2;
work2.push(root_seq);
queue<reference_wrapper<distinguishing_sequence>> work;
work.push(sequence);
while(!work2.empty()){
dist_seq & node = work2.front();
work2.pop();
while(!work.empty()){
distinguishing_sequence & node = work.front();
work.pop();
if(node.CI.size() < 2) continue;
if(node.CI.size() < 2) continue;
vector<bool> states(N, false);
for(auto && state : node.CI){
states[state.first.base()] = true;
}
vector<bool> states(N, false);
for(auto && state : node.CI){
states[state.first.base()] = true;
}
const auto & oboom = lca(root, [&states](state state) -> bool{
return states[state.base()];
});
const auto & oboom = lca(root, [&states](state state) -> bool{
return states[state.base()];
});
if(oboom.children.empty()) continue;
if(oboom.children.empty()) continue;
node.word = oboom.seperator;
for(auto && c : oboom.children){
dist_seq new_c(0, node.depth + 1);
node.word = oboom.seperator;
for(auto && c : oboom.children){
distinguishing_sequence new_c(0, node.depth + 1);
size_t i = 0;
size_t j = 0;
size_t i = 0;
size_t j = 0;
while(i < node.CI.size() && j < c.states.size()){
if(node.CI[i].first < c.states[j]) {
i++;
} else if(node.CI[i].first > c.states[j]) {
j++;
} else {
const auto curr = succession[oboom.depth][node.CI[i].first.base()];
const auto init = node.CI[i].second;
new_c.CI.push_back({curr, init});
i++;
j++;
}
}
// FIXME: this should/could be done without sorting...
sort(begin(new_c.CI), end(new_c.CI));
if(!new_c.CI.empty()){
node.children.push_back(move(new_c));
while(i < node.CI.size() && j < c.states.size()){
if(node.CI[i].first < c.states[j]) {
i++;
} else if(node.CI[i].first > c.states[j]) {
j++;
} else {
const auto curr = succession[oboom.depth][node.CI[i].first.base()];
const auto init = node.CI[i].second;
new_c.CI.push_back({curr, init});
i++;
j++;
}
}
assert(node.children.size() > 1);
// FIXME: this should/could be done without sorting...
sort(begin(new_c.CI), end(new_c.CI));
for(auto & c : node.children) {
work2.push(c);
if(!new_c.CI.empty()){
node.children.push_back(move(new_c));
}
}
assert(node.children.size() > 1);
for(auto & c : node.children) {
work.push(c);
}
}
return r;
return sequence;
}

View file

@ -1,16 +1,32 @@
#pragma once
#include "adaptive_distinguishing_sequence.hpp"
#include "create_splitting_tree.hpp"
#include "mealy.hpp"
struct result2 {
result2(size_t N)
: sequence(N, 0)
{}
#include <vector>
#include <utility>
// The adaptive distinguishing sequence as described in Lee & Yannakakis
// This is really a tree!
dist_seq sequence;
struct result;
struct distinguishing_sequence;
// Creates a distinguishing sequence based on the output of the first algorithm
distinguishing_sequence create_adaptive_distinguishing_sequence(result const & splitting_tree);
// The adaptive distinguishing sequence as described in Lee & Yannakakis
// This is really a tree!
struct distinguishing_sequence {
distinguishing_sequence(size_t N, size_t depth)
: CI(N)
, depth(depth)
{
for(size_t i = 0; i < N; ++i)
CI[i] = {i, i};
}
// current, initial
std::vector<std::pair<state, state>> CI;
std::vector<input> word;
std::vector<distinguishing_sequence> children;
size_t depth;
};
result2 create_adaptive_distinguishing_sequence(result const & splitting_tree);

View file

@ -1,4 +1,5 @@
#include "create_splitting_tree.hpp"
#include "partition.hpp"
#include <functional>
#include <numeric>

View file

@ -1,11 +1,31 @@
#pragma once
#include "mealy.hpp"
#include "partition.hpp"
#include "splitting_tree.hpp"
#include <vector>
struct options;
struct result;
// Creates a Lee & Yannakakis style splitting tree
// Depending on the options it can also create the classical Hopcroft splitting tree
result create_splitting_tree(Mealy const & m, options opt);
// The algorithm can be altered in some ways. This struct provides options
// to the algorithm
struct options {
bool check_validity = true;
};
constexpr options with_validity_check{true};
constexpr options without_validity_check{false};
// The algorithm constructs more than the splitting tree
// We capture the other information as well
struct result {
result(size_t N)
: root(N, 0)
@ -22,12 +42,3 @@ struct result {
// false <-> no adaptive distinguishing sequence
bool is_complete;
};
struct options {
bool check_validity = true;
};
constexpr options with_validity_check{true};
constexpr options without_validity_check{false};
result create_splitting_tree(Mealy const & m, options opt);

View file

@ -1,5 +1,5 @@
#include "write_tree_to_dot.hpp"
#include "adaptive_distinguishing_sequence.hpp"
#include "create_adaptive_distinguishing_sequence.hpp"
#include "splitting_tree.hpp"
#include <fstream>
@ -31,8 +31,8 @@ void write_splitting_tree_to_dot(const splijtboom& root, const string& filename)
write_splitting_tree_to_dot(root, file);
}
void write_adaptive_distinguishing_sequence_to_dot(const dist_seq & root, ostream & out){
write_tree_to_dot(root, [](const dist_seq & node, ostream& out){
void write_adaptive_distinguishing_sequence_to_dot(const distinguishing_sequence & root, ostream & out){
write_tree_to_dot(root, [](const distinguishing_sequence & node, ostream& out){
if(!node.word.empty()){
out << node.word;
} else {
@ -43,7 +43,7 @@ void write_adaptive_distinguishing_sequence_to_dot(const dist_seq & root, ostrea
}, out);
}
void write_adaptive_distinguishing_sequence_to_dot(const dist_seq & root, string const & filename){
void write_adaptive_distinguishing_sequence_to_dot(const distinguishing_sequence & root, string const & filename){
ofstream file(filename);
write_adaptive_distinguishing_sequence_to_dot(root, file);
}

View file

@ -40,6 +40,6 @@ struct splijtboom;
void write_splitting_tree_to_dot(const splijtboom & root, std::ostream & out);
void write_splitting_tree_to_dot(const splijtboom & root, std::string const & filename);
struct dist_seq;
void write_adaptive_distinguishing_sequence_to_dot(const dist_seq & root, std::ostream & out);
void write_adaptive_distinguishing_sequence_to_dot(const dist_seq & root, std::string const & filename);
struct distinguishing_sequence;
void write_adaptive_distinguishing_sequence_to_dot(const distinguishing_sequence & root, std::ostream & out);
void write_adaptive_distinguishing_sequence_to_dot(const distinguishing_sequence & root, std::string const & filename);

View file

@ -1,21 +1,20 @@
#include <create_adaptive_distinguishing_sequence.hpp>
#include <create_splitting_tree.hpp>
#include <logging.hpp>
#include <read_mealy_from_dot.hpp>
#include <write_tree_to_dot.hpp>
#include <logging.hpp>
#include <boost/iostreams/device/file_descriptor.hpp>
#include <boost/iostreams/filtering_stream.hpp>
#include <boost/iostreams/filter/gzip.hpp>
#include <boost/iostreams/filtering_stream.hpp>
#include <cassert>
#include <iostream>
#include <stack>
#include <functional>
#include <vector>
#include <utility>
#include <fstream>
#include <functional>
#include <iostream>
#include <stack>
#include <utility>
#include <vector>
using namespace std;
@ -127,7 +126,7 @@ int main(int argc, char *argv[]){
write_splitting_tree_to_dot(splitting_tree.root, tree_filename);
}
const auto distinguishing_sequence = [&]{
const auto sequence = [&]{
timer t("Lee & Yannakakis II");
return create_adaptive_distinguishing_sequence(splitting_tree);
}();
@ -135,7 +134,7 @@ int main(int argc, char *argv[]){
if(false){
timer t("writing dist sequence");
const string dseq_filename = splitting_tree.is_complete ? (filename + ".dist_seq") : (filename + ".incomplete_dist_seq");
write_adaptive_distinguishing_sequence_to_dot(distinguishing_sequence.sequence, dseq_filename);
write_adaptive_distinguishing_sequence_to_dot(sequence, dseq_filename);
}
const auto seperating_family = [&]{
@ -144,12 +143,12 @@ int main(int argc, char *argv[]){
using SepSet = vector<Word>;
vector<SepSet> seperating_family(machine.graph_size);
stack<pair<vector<input>, reference_wrapper<const dist_seq>>> work;
work.push({{}, distinguishing_sequence.sequence});
stack<pair<vector<input>, reference_wrapper<const distinguishing_sequence>>> work;
work.push({{}, sequence});
while(!work.empty()){
auto word = work.top().first;
const dist_seq & node = work.top().second;
const distinguishing_sequence & node = work.top().second;
work.pop();
if(node.children.empty()){