1
Fork 0
mirror of https://github.com/Jaxan/hybrid-ads.git synced 2025-04-27 23:17:44 +02:00
hybrid-ads/src/main.cpp
2015-03-19 17:25:33 +01:00

280 lines
7.4 KiB
C++

#include <create_adaptive_distinguishing_sequence.hpp>
#include <create_splitting_tree.hpp>
#include <logging.hpp>
#include <read_mealy_from_dot.hpp>
#include <write_tree_to_dot.hpp>
#include <boost/iostreams/device/file_descriptor.hpp>
#include <boost/iostreams/filter/gzip.hpp>
#include <boost/iostreams/filtering_stream.hpp>
#include <cassert>
#include <fstream>
#include <functional>
#include <iostream>
#include <stack>
#include <utility>
#include <vector>
using namespace std;
template <typename T>
vector<string> create_reverse_map(map<string, T> const & indices){
vector<string> ret(indices.size());
for(auto&& p : indices){
ret[p.second.base()] = p.first;
}
return ret;
}
auto bfs(Mealy const & machine, state s){
vector<bool> visited(machine.graph_size, false);
vector<vector<input>> words(machine.graph_size);
queue<state> work;
work.push(s);
while(!work.empty()){
const auto u = work.front();
work.pop();
if(visited[u.base()]) continue;
visited[u.base()] = true;
for(input i = 0; i < machine.input_size; ++i){
const auto v = apply(machine, u, i).to;
if(visited[v.base()]) continue;
words[v.base()] = words[u.base()];
words[v.base()].push_back(i);
work.push(v);
}
}
return words;
}
int main(int argc, char *argv[]){
if(argc != 2) return 1;
const string filename = argv[1];
const auto machine = [&]{
timer t("reading file " + filename);
return read_mealy_from_dot(filename);
}();
const auto splitting_tree_hopcroft = [&]{
timer t("creating hopcroft splitting tree");
return create_splitting_tree(machine, without_validity_check);
}();
const auto all_pair_seperating_sequences = [&]{
timer t("gathering all seperating sequences");
vector<vector<vector<input>>> all_pair_seperating_sequences(machine.graph_size, vector<vector<input>>(machine.graph_size));
queue<reference_wrapper<const splijtboom>> work;
work.push(splitting_tree_hopcroft.root);
// total complexity is O(n^2), as we're visiting each pair only once :)
while(!work.empty()){
const splijtboom & node = work.front();
work.pop();
auto it = begin(node.children);
auto ed = end(node.children);
while(it != ed){
auto jt = next(it);
while(jt != ed){
for(auto && s : it->states){
for(auto && t : jt->states){
assert(all_pair_seperating_sequences[t.base()][s.base()].empty());
assert(all_pair_seperating_sequences[s.base()][t.base()].empty());
all_pair_seperating_sequences[t.base()][s.base()] = node.seperator;
all_pair_seperating_sequences[s.base()][t.base()] = node.seperator;
}
}
jt++;
}
it++;
}
for(auto && c : node.children){
work.push(c);
}
}
for(size_t i = 0; i < machine.graph_size; ++i){
for(size_t j = 0; j < machine.graph_size; ++j){
if(i == j) continue;
assert(!all_pair_seperating_sequences[i][j].empty());
}
}
return all_pair_seperating_sequences;
}();
const auto splitting_tree = [&]{
timer t("Lee & Yannakakis I");
return create_splitting_tree(machine, with_validity_check);
}();
if(false){
timer t("writing splitting tree");
const string tree_filename = splitting_tree.is_complete ? (filename + ".splitting_tree") : (filename + ".incomplete_splitting_tree");
write_splitting_tree_to_dot(splitting_tree.root, tree_filename);
}
const auto sequence = [&]{
timer t("Lee & Yannakakis II");
return create_adaptive_distinguishing_sequence(splitting_tree);
}();
if(false){
timer t("writing dist sequence");
const string dseq_filename = splitting_tree.is_complete ? (filename + ".dist_seq") : (filename + ".incomplete_dist_seq");
write_adaptive_distinguishing_sequence_to_dot(sequence, dseq_filename);
}
const auto seperating_family = [&]{
timer t("making seperating family");
using Word = vector<input>;
using SepSet = vector<Word>;
vector<SepSet> seperating_family(machine.graph_size);
stack<pair<vector<input>, reference_wrapper<const distinguishing_sequence>>> work;
work.push({{}, sequence});
while(!work.empty()){
auto word = work.top().first;
const distinguishing_sequence & node = work.top().second;
work.pop();
if(node.children.empty()){
// add sequence to this leave
for(auto && p : node.CI){
const auto state = p.second;
seperating_family[state.base()].push_back(word);
}
// if the leaf is not a singleton, we need the all_pair seperating seqs
for(auto && p : node.CI){
for(auto && q : node.CI){
const auto s = p.second;
const auto t = q.second;
if(s == t) continue;
seperating_family[s.base()].push_back(all_pair_seperating_sequences[s.base()][t.base()]);
}
}
continue;
}
for(auto && i : node.word)
word.push_back(i);
for(auto && c : node.children)
work.push({word, c});
}
return seperating_family;
}();
const auto inputs = create_reverse_map(machine.input_indices);
const auto outputs = create_reverse_map(machine.output_indices);
const auto print_uio = [&](auto const & word, auto & out, state s) -> auto & {
for(auto && i : word){
const auto o = apply(machine, s, i);
s = o.to;
out << inputs[i.base()] << ' ' << outputs[o.output.base()] << '\n';
}
return out;
};
const auto transfer_sequences = [&]{
timer t("determining transfer sequences");
vector<vector<vector<input>>> transfer_sequences(machine.graph_size);
for(state s = 0; s < machine.graph_size; ++s){
transfer_sequences[s.base()] = bfs(machine, s);
}
return transfer_sequences;
}();
const auto short_checking_seq = [&]{
timer t("making short checking seq");
vector<input> big_seq;
state from = 0;
for(state s = from; s < machine.graph_size; ++s){
for(const auto & seq : seperating_family[s.base()]){
copy(begin(seq), end(seq), back_inserter(big_seq));
from = apply(machine, s, begin(seq), end(seq)).to;
const auto to = s;
if(from == to) continue;
const auto transfer = transfer_sequences[from.base()][to.base()];
copy(begin(transfer), end(transfer), back_inserter(big_seq));
}
const auto to = s+1;
if(from == to) continue;
const auto transfer = transfer_sequences[from.base()][to.base()];
copy(begin(transfer), end(transfer), back_inserter(big_seq));
}
return big_seq;
}();
{
timer t("writing short checking seq");
const string uios_filename = filename + ".short_check_seq";
boost::iostreams::filtering_ostream out;
out.push(boost::iostreams::gzip_compressor());
out.push(boost::iostreams::file_descriptor_sink(uios_filename));
print_uio(short_checking_seq, out, 0);
}
const auto long_checking_seq = [&]{
timer t("making long checking seq");
vector<input> big_seq;
state from = 0;
for(state s = from; s < machine.graph_size; ++s){
for(input i = 0; i < machine.input_size; ++i){
const auto t = apply(machine, s, i).to;
for(auto && seq : seperating_family[t.base()]){
if(from != s){
const auto transfer = transfer_sequences[from.base()][s.base()];
copy(begin(transfer), end(transfer), back_inserter(big_seq));
from = s;
}
big_seq.push_back(i);
from = t;
copy(begin(seq), end(seq), back_inserter(big_seq));
from = apply(machine, from, begin(seq), end(seq)).to;
}
}
}
return big_seq;
}();
{
timer t("writing long checking seq");
const string uios_filename = filename + ".full_check_seq";
boost::iostreams::filtering_ostream out;
out.push(boost::iostreams::gzip_compressor());
out.push(boost::iostreams::file_descriptor_sink(uios_filename));
print_uio(long_checking_seq, out, 0);
}
}