Joshua Moerman
10 years ago
3 changed files with 365 additions and 0 deletions
@ -0,0 +1,20 @@ |
|||||
|
|
||||
|
.PHONY: thesis fast dirs |
||||
|
|
||||
|
# We don want to pollute the root dir, so we use a build dir
|
||||
|
# http://tex.stackexchange.com/questions/12686/how-do-i-run-bibtex-after-using-the-output-directory-flag-with-pdflatex-when-f
|
||||
|
thesis: dirs |
||||
|
xelatex -file-line-error -output-directory=build Rational_Homotopy_Theory.tex |
||||
|
xelatex -file-line-error -output-directory=build Rational_Homotopy_Theory.tex |
||||
|
cp build/Rational_Homotopy_Theory.pdf ./ |
||||
|
|
||||
|
fast: dirs |
||||
|
xelatex -file-line-error -output-directory=build Rational_Homotopy_Theory.tex |
||||
|
cp build/Rational_Homotopy_Theory.pdf ./ |
||||
|
|
||||
|
haltfast: dirs |
||||
|
xelatex -file-line-error -output-directory=build --halt-on-error Rational_Homotopy_Theory.tex |
||||
|
cp build/Rational_Homotopy_Theory.pdf ./ |
||||
|
|
||||
|
dirs: |
||||
|
mkdir -p build |
@ -0,0 +1,185 @@ |
|||||
|
\documentclass[14pt]{beamer} |
||||
|
|
||||
|
\definecolor{todocolor}{rgb}{1, 0.3, 0.2} |
||||
|
\newcommand{\td}[1]{\colorbox{todocolor}{*\footnote{TODO: #1}}} |
||||
|
|
||||
|
\input{preamble} |
||||
|
\usepackage{tabularx} |
||||
|
\renewcommand{\tabularxcolumn}[1]{p{#1}} |
||||
|
|
||||
|
\newcommand{\Frame}[2]{ |
||||
|
\begin{frame}{#1}#2\end{frame} |
||||
|
} |
||||
|
|
||||
|
\title{Rational Homotopy Theory} |
||||
|
\author{Joshua Moerman} |
||||
|
\institute[Radboud Universiteit Nijmegen]{Supervisor: Ieke Moerdijk} |
||||
|
\date{} |
||||
|
|
||||
|
\begin{document} |
||||
|
|
||||
|
\AtBeginSection[]{ |
||||
|
\begin{frame}<beamer> |
||||
|
\tableofcontents[currentsection] |
||||
|
\end{frame} |
||||
|
} |
||||
|
|
||||
|
\Frame{}{ |
||||
|
\titlepage |
||||
|
} |
||||
|
|
||||
|
|
||||
|
\section{Introduction to homotopy theory} |
||||
|
\Frame{Homotopy theory}{ |
||||
|
\begin{center} |
||||
|
Study of space or shapes \\ |
||||
|
with ``weak equivalences'' |
||||
|
|
||||
|
\bigskip |
||||
|
\td{plaatje} |
||||
|
\end{center} |
||||
|
} |
||||
|
|
||||
|
\Frame{Important spaces}{ |
||||
|
\td{plaatjes} |
||||
|
\begin{align*} |
||||
|
S^1 &= ... \\[1em] |
||||
|
S^2 &= ... \\[1em] |
||||
|
S^3 &= \cdots \\[1em] |
||||
|
&\cdots |
||||
|
\end{align*} |
||||
|
} |
||||
|
|
||||
|
\Frame{Important tool}{ |
||||
|
Fundamental group: |
||||
|
|
||||
|
\[ \pi_1(X) = \text{maps } S^1 \to X \text{ up to homotopy} \] |
||||
|
|
||||
|
\bigskip |
||||
|
\td{plaatje} |
||||
|
} |
||||
|
|
||||
|
\Frame{Important tools}{ |
||||
|
Homotopy groups: |
||||
|
|
||||
|
\begin{align*} |
||||
|
\pi_1(X) &= \text{maps } S^1 \to X \text{ up to homotopy} \\[1em] |
||||
|
\pi_2(X) &= \text{maps } S^2 \to X \text{ up to homotopy} \\[1em] |
||||
|
\pi_3(X) &= \text{maps } S^3 \to X \text{ up to homotopy} \\[1em] |
||||
|
&\cdots |
||||
|
\end{align*} |
||||
|
} |
||||
|
|
||||
|
\Frame{Torsion-free}{ |
||||
|
Serre proved in 1950s: |
||||
|
\begin{align*} |
||||
|
\text{odd } k: \quad \pi_n(S^k) \tensor \Q &= |
||||
|
\begin{cases} |
||||
|
\Q &\text{ if } n = k \\ |
||||
|
0 &\text{ otherwise } |
||||
|
\end{cases} \\[1em] |
||||
|
\text{even } k: \quad \pi_n(S^k) \tensor \Q &= |
||||
|
\begin{cases} |
||||
|
\Q &\text{ if } n = k, 2k-1 \\ |
||||
|
0 &\text{ otherwise } |
||||
|
\end{cases} \\ |
||||
|
\end{align*} |
||||
|
} |
||||
|
|
||||
|
|
||||
|
\section{Rational homotopy theory} |
||||
|
\Frame{Rational homotopy theory}{ |
||||
|
\begin{center} |
||||
|
Study of spaces\\ |
||||
|
with ``rational equivalences'' \\ |
||||
|
and ``rational homotopy groups'' |
||||
|
|
||||
|
\pause |
||||
|
\bigskip |
||||
|
or |
||||
|
\bigskip |
||||
|
|
||||
|
Study of \emph{rational} spaces \\ |
||||
|
with weak equivalences \\ |
||||
|
and ordinary homotopy groups |
||||
|
\end{center} |
||||
|
} |
||||
|
|
||||
|
\Frame{Rational spaces}{ |
||||
|
$X$ is \emph{rational} if $\pi_n(X)$ is a $\Q$-vector space |
||||
|
|
||||
|
\bigskip |
||||
|
\td{plaatje telescoop} |
||||
|
} |
||||
|
|
||||
|
|
||||
|
\section{The main equivalence} |
||||
|
\Frame{Main equivalence}{ |
||||
|
\begin{theorem} |
||||
|
\begin{center} |
||||
|
Homotopy theory of rational spaces \\ |
||||
|
= \\ |
||||
|
Homotopy theory of commutative differential graded algebras |
||||
|
\end{center} |
||||
|
\end{theorem} |
||||
|
} |
||||
|
|
||||
|
\Frame{Main equivalence (precise version)}{ |
||||
|
\begin{theorem} |
||||
|
\[ \Ho(\Top_{\Q, 1, f}) \simeq \opCat{\Ho(\CDGA_{\Q, 1, f})} \] |
||||
|
\end{theorem} |
||||
|
} |
||||
|
|
||||
|
\Frame{What is a cdga?}{ |
||||
|
\begin{definition} |
||||
|
a cdga $A$ is |
||||
|
\begin{itemize} |
||||
|
\item a $\Q$-vector space |
||||
|
\item with a multiplication $A \tensor A \tot{\mu} A$ |
||||
|
\item with a differential $A \tot{d} A$ such that $d^2 = 0$ |
||||
|
\item with a grading $A = \bigoplus_{n \in \N} A^n$ |
||||
|
\item it is commutative: $ x y = (-1)^{\deg{x}\cdot\deg{y}} y x $ |
||||
|
\end{itemize} |
||||
|
\end{definition} |
||||
|
} |
||||
|
|
||||
|
\Frame{Free cdga's}{ |
||||
|
As always: there is a free guy: $\Lambda(...)$ |
||||
|
|
||||
|
For example |
||||
|
\[ \Lambda(t, dt) \text{ with } \deg{t} = 0 \] |
||||
|
is just polynomials in $t$, with its differential $dt$ |
||||
|
} |
||||
|
|
||||
|
\newcommand{\Dict}[1]{ |
||||
|
\noindent |
||||
|
\begin{tabularx}{\textwidth}{ X X } |
||||
|
{\bf rational spaces} & {\bf cdga's} \\[1em] |
||||
|
#1 |
||||
|
\end{tabularx} |
||||
|
} |
||||
|
|
||||
|
\Frame{Dictionary}{ |
||||
|
\Dict{ |
||||
|
$S^n$ with $n$ odd |
||||
|
& $\Lambda(e)$ with $\deg{e} = n$ \\[1em] |
||||
|
|
||||
|
$S^n$ with $n$ even |
||||
|
& $\Lambda(e, f)$ with $\deg{e} = n$, $\deg{f} = 2n-1$ and $d f = e^2$ \\[1em] |
||||
|
|
||||
|
Eilenberg-MacLane space $K(\Q, n)$ |
||||
|
& $\Lambda(e)$ with $\deg{e} = n$ |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
\Frame{Dictionary}{ |
||||
|
\Dict{ |
||||
|
homotopy $$h: X \times I \to Y$$ |
||||
|
& homotopy $$h: A \to B \tensor \Lambda(t, dt)$$ \\[1em] |
||||
|
|
||||
|
$f: X \to Y$ weak equivalence if $\pi_n(f): \pi_n(X) \iso \pi_n(Y)$ |
||||
|
& $f: A \to B$ weak equivalence if $H(f): H(X) \iso H(Y)$ |
||||
|
} |
||||
|
} |
||||
|
|
||||
|
\end{document} |
@ -0,0 +1,160 @@ |
|||||
|
|
||||
|
% normally included with amsart |
||||
|
% \usepackage{amsmath, amsthm} |
||||
|
|
||||
|
% font with unicode support, does not work with classicthesis |
||||
|
% \usepackage{fontspec} |
||||
|
|
||||
|
% clickable tocs |
||||
|
\usepackage{hyperref} |
||||
|
|
||||
|
% floating figures |
||||
|
\usepackage{float} |
||||
|
|
||||
|
% for multiple cites |
||||
|
\usepackage{cite} |
||||
|
|
||||
|
% fancy diagrams |
||||
|
\usepackage{tikz} |
||||
|
\usetikzlibrary{matrix, arrows, decorations} |
||||
|
\tikzset{node distance=2.5em, row sep=2.2em, column sep=2.7em, auto} |
||||
|
|
||||
|
% simple diagrams |
||||
|
% \usepackage[all,cmtip]{xy} |
||||
|
|
||||
|
\usepackage{graphicx} |
||||
|
% \graphicspath{ {./images/} } |
||||
|
\usepackage{caption} |
||||
|
\usepackage{subcaption} |
||||
|
|
||||
|
% for the fib arrow |
||||
|
\usepackage{amssymb} |
||||
|
|
||||
|
% Some basic objects |
||||
|
\newcommand{\N}{\mathbb{N}} % natural numbers |
||||
|
\newcommand{\Np}{{\mathbb{N}^{>0}}} % positive numbers |
||||
|
\newcommand{\Z}{\mathbb{Z}} % integers |
||||
|
\newcommand{\R}{\mathbb{R}} % reals |
||||
|
\DeclareRobustCommand{\Q}{\mathbb{Q}} % rationals |
||||
|
\renewcommand{\k}{\mathrm{I\!k}} % default ground ring |
||||
|
|
||||
|
% Basic category stuff |
||||
|
\newcommand{\cat}[1]{\mathbf{#1}} % the category of ... |
||||
|
\newcommand{\opCat}[1]{{#1}^{\text{op}}}% opposite category |
||||
|
\newcommand{\Hom}{\mathbf{Hom}} |
||||
|
\newcommand{\id}{\mathbf{id}} |
||||
|
\newcommand{\Ho}{\cat{Ho}} |
||||
|
|
||||
|
% Categories |
||||
|
\newcommand{\Set}{\cat{Set}} % sets |
||||
|
\newcommand{\Top}{\cat{Top}} % topological spaces |
||||
|
\newcommand{\Grp}{\cat{Grp}} % groups |
||||
|
\newcommand{\Ab}{\cat{Ab}} % abelian groups |
||||
|
\newcommand{\DELTA}{\boldsymbol{\Delta}}% the simplicial cat |
||||
|
\newcommand{\simplicial}[1]{\cat{s{#1}}}% simplicial objects |
||||
|
\newcommand{\sSet}{\simplicial{\Set}} % simplicial sets |
||||
|
\newcommand{\Mod}[1]{\cat{{#1}Mod}} % modules over a ring |
||||
|
\newcommand{\Alg}[1]{\cat{{#1}Alg}} % algebras over a ring |
||||
|
\newcommand{\grMod}[1]{\cat{gr\mbox{-}{#1}Mod}} % graded modules over a ring |
||||
|
\newcommand{\grAlg}[1]{\cat{gr\mbox{-}{#1}Alg}} % graded algebras over a ring |
||||
|
\newcommand{\dgMod}[1]{\cat{dg\mbox{-}{#1}Mod}} % differential graded modules over a ring |
||||
|
\newcommand{\dgAlg}[1]{\cat{dg\mbox{-}{#1}Alg}} % differential graded algebras over a ring |
||||
|
\newcommand{\Ch}[1]{\cat{Ch_{n\geq0}({#1})}} % chain complexes |
||||
|
\newcommand{\CoCh}[1]{\cat{Ch^{n\geq0}({#1})}} % cochain complexes |
||||
|
\DeclareRobustCommand{\DGA}{\cat{DGA}} % cochain algebras |
||||
|
\DeclareRobustCommand{\CDGA}{\cat{CDGA}} % commutative cochain algebras |
||||
|
\DeclareRobustCommand{\AugCDGA}{\cat{CDGA^\ast}}% augmentedcommutative cochain algebras |
||||
|
|
||||
|
\newcommand{\cof}{\hookrightarrow} % cofibration |
||||
|
\newcommand{\fib}{\twoheadrightarrow} % fibration |
||||
|
\newcommand{\we}{\tot{\simeq}} % weak equivalence |
||||
|
|
||||
|
% for use in xy diagrams |
||||
|
\newcommand{\arcof}{\ar@{^{(}->}} |
||||
|
\newcommand{\artcof}{\ar@{^{(}->}|\simeq} |
||||
|
\newcommand{\arfib}{\ar@{->>}} |
||||
|
\newcommand{\artfib}{\ar@{->>}|\simeq} |
||||
|
\newcommand{\arwe}{\ar|-\simeq} |
||||
|
\newcommand{\ariso}{\ar|-\iso} |
||||
|
|
||||
|
% adjunction symbol for xymatrices |
||||
|
\newcommand{\xyadj}{\raisebox{0.2\height}{\scalebox{0.5}{$\perp$}}} |
||||
|
|
||||
|
% pushout and pullback for xymatrices (makes empty arrow with text) |
||||
|
\newcommand{\xypo}{\ar@{}[dr]|(.75){\scalebox{1.2}{$\ulcorner$}}} |
||||
|
\newcommand{\xypb}{\ar@{}[dr]|(.25){\scalebox{1.2}{$\lrcorner$}}} |
||||
|
|
||||
|
%\newcommand{\leftadj}{\ooalign{\hss\rightleftarrows\hss\cr\bot}} |
||||
|
\newcommand{\leftadj}{\rightleftarrows} |
||||
|
|
||||
|
% Notation and operators |
||||
|
\newcommand{\I}{\,\mid\,} % seperator in set notation |
||||
|
\newcommand{\del}{\partial} % boundary |
||||
|
\newcommand{\iso}{\cong} % isomorphic |
||||
|
\newcommand{\eq}{\sim} % homotopic |
||||
|
\newcommand{\ison}[1]{\stackrel{(#1)}{\iso}} % isos to refer to |
||||
|
\newcommand{\refison}[1]{{\small $(#1)$}} % ref |
||||
|
\newcommand{\tot}[1]{\xrightarrow{\,\,{#1}\,\,}} % arrow with name |
||||
|
\newcommand{\toti}[1]{\xleftarrow{\,\,{#1}\,\,}} % left arrow with name |
||||
|
\newcommand{\mapstot}[1]{\xmapsto{\,\,{#1}\,\,}} % mapsto with name |
||||
|
\newcommand{\unit}{\eta} |
||||
|
\newcommand{\counit}{\epsilon} |
||||
|
\DeclareMathOperator*{\im}{im} |
||||
|
\DeclareMathOperator*{\coker}{coker} |
||||
|
\DeclareMathOperator*{\colim}{colim} |
||||
|
\DeclareMathOperator*{\Tor}{Tor} |
||||
|
\DeclareMathOperator*{\Ext}{Ext} |
||||
|
\DeclareMathOperator*{\tensor}{\otimes} |
||||
|
\DeclareMathOperator*{\bigtensor}{\bigotimes} |
||||
|
\renewcommand{\deg}[1]{{|{#1}|}} |
||||
|
\newcommand{\Char}[1]{char({#1})} |
||||
|
\newcommand{\RH}{\widetilde{H}} % reduced homology |
||||
|
\DeclareRobustCommand{\C}{\mathcal{C}} % Serre mod C class |
||||
|
\newcommand{\Apl}[0]{{A_{PL}}} % Apl simplicial set of polynomials |
||||
|
|
||||
|
\newcommand{\titleCDGA}{\texorpdfstring{$\CDGA$}{CDGA}} |
||||
|
|
||||
|
% restriction of a function |
||||
|
\newcommand\restr[2]{{% we make the whole thing an ordinary symbol |
||||
|
\left.\kern-\nulldelimiterspace % automatically resize the bar with \right |
||||
|
#1 % the function |
||||
|
\vphantom{\big|} % pretend it's a little taller at normal size |
||||
|
\right|_{#2} % this is the delimiter |
||||
|
}} |
||||
|
|
||||
|
% Todos in the margin |
||||
|
\newcommand{\todo}[1]{ |
||||
|
\addcontentsline{tdo}{todo}{\protect{#1}} |
||||
|
$\ast$ \marginpar{\tiny $\ast$ #1} |
||||
|
} |
||||
|
% Big todos in text |
||||
|
\newcommand{\TODO}[1]{ |
||||
|
\addcontentsline{tdo}{todo}{\protect{#1}} |
||||
|
{\tiny $\ast$ #1} |
||||
|
} |
||||
|
% TODO item, as itemize does not work |
||||
|
\newcommand{\titem}[0]{\\-\qquad} |
||||
|
% List of todos |
||||
|
\makeatletter |
||||
|
\newcommand \listoftodos{\section*{Todo list} \@starttoc{tdo}} |
||||
|
\newcommand\l@todo[2]{ |
||||
|
\par\noindent \textit{#2}, \parbox{10cm}{#1}\par |
||||
|
} |
||||
|
\makeatother |
||||
|
|
||||
|
% simple way to center an image |
||||
|
\newcommand{\cimage}[2][]{ |
||||
|
\begin{center} |
||||
|
\includegraphics[#1]{#2} |
||||
|
\end{center} |
||||
|
} |
||||
|
|
||||
|
% simple way to center a diagram |
||||
|
\newcommand{\cdiagrambase}[1]{ |
||||
|
\begin{displaymath} |
||||
|
\input{#1} |
||||
|
\end{displaymath} |
||||
|
} |
||||
|
\newcommand{\cdiagram}[1]{ |
||||
|
\cdiagrambase{diagrams/#1} |
||||
|
} |
Reference in new issue