|
|
@ -162,10 +162,10 @@ |
|
|
|
|
|
|
|
\Frame{Dictionary}{ |
|
|
|
\Dict{ |
|
|
|
$S^n$ with $n$ odd |
|
|
|
$S^n_\Q$ with $n$ odd |
|
|
|
& $\Lambda(e)$ with $\deg{e} = n$ \\[1em] |
|
|
|
|
|
|
|
$S^n$ with $n$ even |
|
|
|
$S^n_\Q$ with $n$ even |
|
|
|
& $\Lambda(e, f)$ with $\deg{e} = n$, $\deg{f} = 2n-1$ and $d f = e^2$ \\[1em] |
|
|
|
|
|
|
|
Eilenberg-MacLane space $K(\Q, n)$ |
|
|
@ -175,12 +175,49 @@ |
|
|
|
|
|
|
|
\Frame{Dictionary}{ |
|
|
|
\Dict{ |
|
|
|
weak equivalence $$\pi_n(f): \pi_n(X) \iso \pi_n(Y)$$ |
|
|
|
& weak equivalence $$H(f): H(X) \iso H(Y)$$ \\[1em] |
|
|
|
|
|
|
|
homotopy $$h: X \times I \to Y$$ |
|
|
|
& homotopy $$h: A \to B \tensor \Lambda(t, dt)$$ \\[1em] |
|
|
|
& homotopy $$h: A \to B \tensor \Lambda(t, dt)$$ |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
weak equivalence $$\pi_n(f): \pi_n(X) \iso \pi_n(Y)$$ |
|
|
|
& weak equivalence if $$H(f): H(X) \iso H(Y)$$ |
|
|
|
\Frame{Dictionary}{ |
|
|
|
\Dict{ |
|
|
|
$$ \pi_n(X) = [S^n, X] $$ |
|
|
|
& {\begin{align*} |
|
|
|
\pi^n(A) &= H(Q(A)) \\ |
|
|
|
\pi^n(A)^\ast &\iso [A, \Lambda(e)] \\ |
|
|
|
&\text{or } [A, \Lambda(e, f)] |
|
|
|
\end{align*}} \\[1em] |
|
|
|
|
|
|
|
Long exact sequence of a fibration |
|
|
|
& Long exact sequence of a cofibration \\[1em] |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
\Frame{Dictionary}{ |
|
|
|
\bf topological $n$-simplex |
|
|
|
\[ \Delta^n = \left\{ (x_0, \ldots, x_n) \in \R^{n+1} \,|\, \sum x_i = 1, x_i \geq 0 \right\} \] |
|
|
|
|
|
|
|
\bigskip |
|
|
|
\bf cdga $n$-simplex |
|
|
|
\[ \Delta_n = \frac{\Lambda(x_0, \ldots x_n, dx_0, \ldots, dx_n)}{\langle \sum x_i - 1, \sum dx_i \rangle} \] |
|
|
|
} |
|
|
|
|
|
|
|
\Frame{Construction}{ |
|
|
|
\begin{center} |
|
|
|
\begin{tikzcd}[column sep=huge, row sep=huge, ampersand replacement=\&] |
|
|
|
\DELTA \arrow[d, "y"] \arrow[rd, "\Delta_{(-)}"] \& \\ |
|
|
|
\sSet \arrow[r, dashed, shift left = 1ex, "A"] \& \opCat{\CDGA_\Q} \arrow[l, dashed, shift left = 1ex] |
|
|
|
\end{tikzcd} |
|
|
|
\end{center} |
|
|
|
|
|
|
|
\bigskip |
|
|
|
\pause |
|
|
|
\[ A(X) = \Hom_\sSet(X, \Delta_{(-)}) \] |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
\end{document} |
|
|
|