Browse Source

Fixes a proof (to some extend)

master
Joshua Moerman 9 years ago
parent
commit
ff5ade6894
  1. 15
      thesis/notes/Minimal_Models.tex

15
thesis/notes/Minimal_Models.tex

@ -47,6 +47,8 @@ The above definition is the same as in \cite{felix} without assuming connectivit
It is clear that induction will be an important technique when proving things about (minimal) Sullivan algebras. We will first prove that minimal models always exist for $1$-connected cdga's and afterwards prove uniqueness. It is clear that induction will be an important technique when proving things about (minimal) Sullivan algebras. We will first prove that minimal models always exist for $1$-connected cdga's and afterwards prove uniqueness.
\todo{at the moment this is just cut n pasted. Rewrite to make sense in this context}
Minimal models admit very nice homotopy groups. Note that for a minimal algebra $\Lambda V$ there is a natural augmentation and the the differential is decomposable. Hence $Q \Lambda V$ is naturally isomorphic to $(V, 0)$. In particular the homotopy groups are simply given by $\pi^n(\Lambda V) = V^n$.
\section{Existence} \section{Existence}
@ -128,8 +130,12 @@ Now if the map $f$ is a weak equivalence, both maps $\phi$ and $\psi$ are surjec
Let $\phi: (M, d) \we (M', d')$ be a weak equivalence between minimal algebras. Then $\phi$ is an isomorphism. Let $\phi: (M, d) \we (M', d')$ be a weak equivalence between minimal algebras. Then $\phi$ is an isomorphism.
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
\todo{introduce homotopy groups before this point. Prove it using that} Let $M$ and $M'$ be generated by $V$ and $V'$. Then $\phi$ induces a weak equivalence on the linear part $\phi_0: V \we V'$ \cite[Theorem 1.5.2]{loday}. Since the differentials are decomposable, their linear part vanishes. So we see that $\phi_0: (V, 0) \tot{\iso} (V', 0)$ is an isomorphism. Since both $M$ and $M'$ are minimal, they are cofibrant and so the weak equivalence is a strong homotopy equivalence (\CorollaryRef{cdga_homotopy_properties}). And so the induced map $\pi^n(\phi) : \pi^n(M) \to \pi^n(M')$ is an isomorphism (\LemmaRef{cdga-homotopic-maps-equal-pin}).
Conclude that $\phi = \Lambda \phi_0$ is an isomorphism.
Since $M$ (resp. $M'$) is free as a cga's, it is generated by some graded vector space $V$ (resp. $V'$). By an earlier remark \todo{where?} the homotopy groups were eassy to calculate and we conclude that $\phi$ induces an isomorphism from $V$ to $V'$:
\[ \pi^\ast(\phi) : V \tot{\iso} V'. \]
Conclude that $\phi = \Lambda \phi_0$ \todo{why?} is an isomorphism.
\end{proof} \end{proof}
\Theorem{unique-minimal-model}{ \Theorem{unique-minimal-model}{
@ -155,11 +161,6 @@ Now by \LemmaRef{minimal-model-bijection} we get a bijection ${m_Y}_\ast^{-1} :
} }
\section{Homotopy groups of minimal models}
\todo{at the moment this is just cut n pasted. Rewrite to make sense in this context}
Minimal models admit very nice homotopy groups. Note that for a minimal algebra $\Lambda V$ there is a natural augmentation and the the differential is decomposable. Hence $Q \Lambda V$ is naturally isomorphic to $(V, 0)$. In particular the homotopy groups are simply given by $\pi^n(\Lambda V) = V^n$.
\section{The minimal model of the sphere} \section{The minimal model of the sphere}
We know from singular cohomology that the cohomology ring of a $n$-sphere is $\Z[X] / (X^2)$. This allows us to construct a minimal model for $S^n$. We know from singular cohomology that the cohomology ring of a $n$-sphere is $\Z[X] / (X^2)$. This allows us to construct a minimal model for $S^n$.
\Definition{minimal-model-sphere}{ \Definition{minimal-model-sphere}{