mirror of
https://github.com/Jaxan/nominal-lstar.git
synced 2025-04-27 06:37:45 +02:00
Wrote a simpler data structure for the observation table. However, it is slower
This commit is contained in:
parent
8a66ccaec5
commit
0b046ca73f
4 changed files with 162 additions and 39 deletions
|
@ -15,7 +15,7 @@ myConfig = defaultConfig
|
|||
|
||||
main = defaultMainWith myConfig [
|
||||
bgroup "NomNLStar"
|
||||
[ bench "NFA1 -" $ whnf (learnBollig 0 0) (teacherWithTargetNonDet 2 Examples.exampleNFA1)
|
||||
[ bench "NFA1 -" $ whnf (learnBollig 1 1) (teacherWithTargetNonDet 2 Examples.exampleNFA1)
|
||||
, bench "NFA2 1" $ whnf (learnBollig 0 0) (teacherWithTargetNonDet 3 (Examples.exampleNFA2 1))
|
||||
, bench "NFA2 2" $ whnf (learnBollig 0 0) (teacherWithTargetNonDet 4 (Examples.exampleNFA2 2))
|
||||
]
|
||||
|
|
|
@ -32,6 +32,7 @@ library
|
|||
Examples.RunningExample,
|
||||
Examples.Stack,
|
||||
ObservationTable,
|
||||
SimpleObservationTable,
|
||||
Teacher,
|
||||
Teachers.Teacher,
|
||||
Teachers.Terminal,
|
||||
|
|
|
@ -1,14 +1,16 @@
|
|||
{-# language PartialTypeSignatures #-}
|
||||
{-# language RecordWildCards #-}
|
||||
{-# OPTIONS_GHC -Wno-partial-type-signatures #-}
|
||||
module Bollig where
|
||||
|
||||
import AbstractLStar
|
||||
import Angluin
|
||||
import ObservationTable
|
||||
import SimpleObservationTable
|
||||
import Teacher
|
||||
|
||||
import Data.List (tails)
|
||||
import Debug.Trace
|
||||
import NLambda
|
||||
import Prelude (Bool (..), Int, Maybe (..), ($), (++), (.))
|
||||
import NLambda hiding (alphabet)
|
||||
import Prelude (Bool (..), Int, Maybe (..), Show (..), snd, ($), (++), (.))
|
||||
|
||||
-- Comparing two graphs of a function is inefficient in NLambda,
|
||||
-- because we do not have a map data structure. (So the only way
|
||||
|
@ -17,74 +19,91 @@ import Prelude (Bool (..), Int, Maybe (..), ($), (++), (.))
|
|||
-- as a subset.
|
||||
-- This does hinder generalisations to other nominal join semi-
|
||||
-- lattices than the Booleans.
|
||||
brow :: (NominalType i) => Table i Bool -> [i] -> Set [i]
|
||||
brow t is = mapFilter (\((a,b),c) -> maybeIf (eq is a /\ fromBool c) b) t
|
||||
|
||||
rfsaClosednessTest :: LearnableAlphabet i => Set (Set [i]) -> State i -> TestResult i
|
||||
rfsaClosednessTest primesUpp State{..} = case solve (isEmpty defect) of
|
||||
-- The teacher interface is slightly inconvenient
|
||||
-- But this is for a good reason. The type [i] -> o
|
||||
-- doesn't work well in nlambda
|
||||
mqToBool :: (NominalType i, Contextual i) => Teacher i -> MQ i Bool
|
||||
mqToBool teacher words = simplify answer
|
||||
where
|
||||
realQ = membership teacher words
|
||||
(inw, outw) = partition snd realQ
|
||||
answer = map (setB True) inw `union` map (setB False) outw
|
||||
setB b (w, _) = (w, b)
|
||||
|
||||
tableAt :: NominalType i => BTable i -> [i] -> [i] -> Formula
|
||||
tableAt t s e = singleton True `eq` mapFilter (\(i, o) -> maybeIf ((s ++ e) `eq` i) o) (content t)
|
||||
|
||||
rfsaClosednessTest :: NominalType i => Set (BRow i) -> BTable i -> TestResult i
|
||||
rfsaClosednessTest primesUpp t@Table{..} = case solve (isEmpty defect) of
|
||||
Just True -> Succes
|
||||
Just False -> trace "Not closed" $ Failed defect empty
|
||||
Nothing -> trace "@@@ Unsolved Formula (rfsaClosednessTest) @@@" $
|
||||
Failed defect empty
|
||||
where
|
||||
defect = filter (\ua -> brow t ua `neq` sum (filter (`isSubsetOf` brow t ua) primesUpp)) ssa
|
||||
defect = filter (\ua -> brow t ua `neq` sum (filter (`isSubsetOf` brow t ua) primesUpp)) (rowsExt t)
|
||||
|
||||
rfsaConsistencyTest :: LearnableAlphabet i => State i -> TestResult i
|
||||
rfsaConsistencyTest State{..} = case solve (isEmpty defect) of
|
||||
rfsaConsistencyTest :: NominalType i => BTable i -> TestResult i
|
||||
rfsaConsistencyTest t@Table{..} = case solve (isEmpty defect) of
|
||||
Just True -> Succes
|
||||
Just False -> trace "Not consistent" $ Failed empty defect
|
||||
Nothing -> trace "@@@ Unsolved Formula (rfsaConsistencyTest) @@@" $
|
||||
Failed empty defect
|
||||
where
|
||||
candidates = pairsWithFilter (\u1 u2 -> maybeIf (brow t u2 `isSubsetOf` brow t u1) (u1, u2)) ss ss
|
||||
defect = triplesWithFilter (\(u1, u2) a v -> maybeIf (not (tableAt t (u1 ++ [a]) v) /\ tableAt t (u2 ++ [a]) v) (a:v)) candidates aa ee
|
||||
candidates = pairsWithFilter (\u1 u2 -> maybeIf (brow t u2 `isSubsetOf` brow t u1) (u1, u2)) rows rows
|
||||
defect = triplesWithFilter (\(u1, u2) a v -> maybeIf (not (tableAt t (u1 ++ [a]) v) /\ tableAt t (u2 ++ [a]) v) (a:v)) candidates alph columns
|
||||
|
||||
-- Note that we do not have the same type of states as the angluin algorithm.
|
||||
-- We have Set [i] instead of BRow i. (However, They are isomorphic.)
|
||||
constructHypothesisBollig :: NominalType i => Set (Set [i]) -> State i -> Automaton (Set [i]) i
|
||||
constructHypothesisBollig primesUpp State{..} = automaton q aa d i f
|
||||
constructHypothesisBollig :: NominalType i => Set (BRow i) -> BTable i -> Automaton (BRow i) i
|
||||
constructHypothesisBollig primesUpp t@Table{..} = automaton q alph d i f
|
||||
where
|
||||
q = primesUpp
|
||||
i = filter (`isSubsetOf` brow t []) q
|
||||
f = filter (`contains` []) q
|
||||
d0 = triplesWithFilter (\s a s2 -> maybeIf (brow t s2 `isSubsetOf` brow t (s ++ [a])) (brow t s, a, brow t s2)) ss aa ss
|
||||
-- TODO: compute indices of primesUpp only once
|
||||
d0 = triplesWithFilter (\s a s2 -> maybeIf (brow t s2 `isSubsetOf` brow t (s ++ [a])) (brow t s, a, brow t s2)) rows alph rows
|
||||
d = filter (\(q1, _, q2) -> q1 `member` q /\ q2 `member` q) d0
|
||||
|
||||
--makeCompleteBollig :: LearnableAlphabet i => TableCompletionHandler i
|
||||
--makeCompleteBollig = makeCompleteWith [rfsaClosednessTest, rfsaConsistencyTest]
|
||||
-- Adds all suffixes as columns
|
||||
-- TODO: do actual Rivest and Schapire
|
||||
addCounterExample :: (NominalType i, _) => MQ i Bool -> Set [i] -> BTable i -> BTable i
|
||||
addCounterExample mq ces t@Table{..} =
|
||||
trace ("Using ce: " ++ show ces) $
|
||||
let newColumns = sum . map (fromList . tails) $ ces
|
||||
newColumnsRed = newColumns \\ columns
|
||||
in addColumns mq newColumnsRed t
|
||||
|
||||
learnBollig :: LearnableAlphabet i => Int -> Int -> Teacher i -> Automaton (Set [i]) i
|
||||
--learnBollig k n teacher = learn makeCompleteBollig useCounterExampleMP constructHypothesisBollig teacher initial
|
||||
-- where initial = constructEmptyState k n teacher
|
||||
learnBollig :: (NominalType i, Contextual i, _) => Int -> Int -> Teacher i -> Automaton (BRow i) i
|
||||
learnBollig k n teacher = learnBolligLoop teacher (initialTableSize (mqToBool teacher) (alphabet teacher) k n)
|
||||
|
||||
learnBollig k n teacher = learnBolligLoop teacher (constructEmptyState k n teacher)
|
||||
|
||||
learnBolligLoop teacher s1@State{..} =
|
||||
learnBolligLoop :: _ => Teacher i -> BTable i -> Automaton (BRow i) i
|
||||
learnBolligLoop teacher t@Table{..} =
|
||||
let
|
||||
allRowsUpp = map (brow t) ss
|
||||
allRows = allRowsUpp `union` map (brow t) ssa
|
||||
allRowsUpp = map (brow t) rows
|
||||
allRows = allRowsUpp `union` map (brow t) (rowsExt t)
|
||||
primesUpp = filter (\r -> isNotEmpty r /\ r `neq` sum (filter (`isSubsetOf` r) (allRows \\ orbit [] r))) allRowsUpp
|
||||
|
||||
-- No worry, these are computed lazily
|
||||
closednessRes = rfsaClosednessTest primesUpp s1
|
||||
consistencyRes = rfsaConsistencyTest s1
|
||||
h = constructHypothesisBollig primesUpp s1
|
||||
closednessRes = rfsaClosednessTest primesUpp t
|
||||
consistencyRes = rfsaConsistencyTest t
|
||||
hyp = constructHypothesisBollig primesUpp t
|
||||
in
|
||||
trace "1. Making it rfsa closed" $
|
||||
case closednessRes of
|
||||
Failed newRows _ ->
|
||||
let state2 = simplify $ addRows teacher newRows s1 in
|
||||
let state2 = simplify $ addRows (mqToBool teacher) newRows t in
|
||||
trace ("newrows = " ++ show newRows) $
|
||||
learnBolligLoop teacher state2
|
||||
Succes ->
|
||||
trace "1. Making it rfsa consistent" $
|
||||
trace "2. Making it rfsa consistent" $
|
||||
case consistencyRes of
|
||||
Failed _ newColumns ->
|
||||
let state2 = simplify $ addColumns teacher newColumns s1 in
|
||||
let state2 = simplify $ addColumns (mqToBool teacher) newColumns t in
|
||||
trace ("newcols = " ++ show newColumns) $
|
||||
learnBolligLoop teacher state2
|
||||
Succes ->
|
||||
traceShow h $
|
||||
traceShow hyp $
|
||||
trace "3. Equivalent? " $
|
||||
eqloop s1 h
|
||||
eqloop t hyp
|
||||
where
|
||||
eqloop s2 h = case equivalent teacher h of
|
||||
Nothing -> trace "Yes" h
|
||||
|
@ -92,7 +111,6 @@ learnBolligLoop teacher s1@State{..} =
|
|||
if isTrue . isEmpty $ realces h ces
|
||||
then eqloop s2 h
|
||||
else
|
||||
let s3 = useCounterExampleMP teacher s2 ces in
|
||||
let s3 = addCounterExample (mqToBool teacher) ces s2 in
|
||||
learnBolligLoop teacher s3
|
||||
realces h ces = NLambda.filter (\(ce, a) -> a `neq` accepts h ce) $ membership teacher ces
|
||||
|
||||
|
|
104
src/SimpleObservationTable.hs
Normal file
104
src/SimpleObservationTable.hs
Normal file
|
@ -0,0 +1,104 @@
|
|||
{-# language DeriveAnyClass #-}
|
||||
{-# language DeriveGeneric #-}
|
||||
{-# language RecordWildCards #-}
|
||||
|
||||
module SimpleObservationTable where
|
||||
|
||||
import NLambda hiding (fromJust)
|
||||
|
||||
import GHC.Generics (Generic)
|
||||
import Prelude (Bool (..), Eq, Int, Ord, Show (..), fst, (++))
|
||||
import qualified Prelude ()
|
||||
|
||||
|
||||
-- We represent functions as their graphs
|
||||
-- Except when o = Bool, more on that later
|
||||
type Fun i o = Set (i, o)
|
||||
|
||||
dom :: (NominalType i, NominalType o) => Fun i o -> Set i
|
||||
dom = map fst
|
||||
|
||||
-- Words are indices to our table
|
||||
type RowIndex i = [i]
|
||||
type ColumnIndex i = [i]
|
||||
|
||||
-- A table is nothing more than a part of the language.
|
||||
-- Invariant: content is always defined for elements in
|
||||
-- `rows * columns` and `rows * alph * columns`.
|
||||
data Table i o = Table
|
||||
{ content :: Fun [i] o
|
||||
, rows :: Set (RowIndex i)
|
||||
, columns :: Set (ColumnIndex i)
|
||||
, alph :: Set i
|
||||
}
|
||||
deriving (Show, Ord, Eq, Generic, NominalType, Conditional, Contextual)
|
||||
|
||||
rowsExt :: (NominalType i, NominalType o) => Table i o -> Set (RowIndex i)
|
||||
rowsExt Table{..} = pairsWith (\r a -> r ++ [a]) rows alph
|
||||
|
||||
columnsExt :: (NominalType i, NominalType o) => Table i o -> Set (RowIndex i)
|
||||
columnsExt Table{..} = pairsWith (:) alph columns
|
||||
|
||||
-- I could make a more specific implementation for booleans
|
||||
-- But for now we reuse the above.
|
||||
type BTable i = Table i Bool
|
||||
|
||||
-- A row is the data in a table, i.e. a function from columns to the output
|
||||
type Row i o = Fun [i] o
|
||||
|
||||
row :: (NominalType i, NominalType o) => Table i o -> RowIndex i -> Row i o
|
||||
row Table{..} r = pairsWithFilter (\e (a, b) -> maybeIf (a `eq` (r ++ e)) (e, b)) columns content
|
||||
|
||||
-- Special case of a boolean: functions to Booleans are subsets
|
||||
type BRow i = Set [i]
|
||||
|
||||
-- TODO: slightly inefficient
|
||||
brow :: NominalType i => BTable i -> RowIndex i -> BRow i
|
||||
brow Table{..} r = let lang = mapFilter (\(i, o) -> maybeIf (fromBool o) i) content
|
||||
in filter (\a -> lang `contains` (r ++ a)) columns
|
||||
|
||||
|
||||
-- Membership queries (TODO: move to Teacher)
|
||||
type MQ i o = Set [i] -> Set ([i], o)
|
||||
|
||||
initialTableWith :: (NominalType i, NominalType o) => MQ i o -> Set i -> Set (RowIndex i) -> Set (ColumnIndex i) -> Table i o
|
||||
initialTableWith mq alphabet newRows newColumns = Table
|
||||
{ content = content
|
||||
, rows = newRows
|
||||
, columns = newColumns
|
||||
, alph = alphabet
|
||||
}
|
||||
where
|
||||
newColumnsExt = pairsWith (:) alphabet newColumns
|
||||
domain = pairsWith (++) newRows (newColumns `union` newColumnsExt)
|
||||
content = mq domain
|
||||
|
||||
initialTable :: (NominalType i, NominalType o) => MQ i o -> Set i -> Table i o
|
||||
initialTable mq alphabet = initialTableWith mq alphabet (singleton []) (singleton [])
|
||||
|
||||
initialTableSize :: (NominalType i, NominalType o) => MQ i o -> Set i -> Int -> Int -> Table i o
|
||||
initialTableSize mq alphabet rs cs = initialTableWith mq alphabet (replicateSetUntil rs alphabet) (replicateSetUntil cs alphabet)
|
||||
|
||||
-- Assumption: newRows is disjoint from rows (for efficiency)
|
||||
addRows :: (NominalType i, NominalType o) => MQ i o -> Set (RowIndex i) -> Table i o -> Table i o
|
||||
addRows mq newRows t@Table{..} =
|
||||
t { content = content `union` newContent
|
||||
, rows = rows `union` newRows
|
||||
}
|
||||
where
|
||||
newRowsExt = pairsWith (\r a -> r ++ [a]) newRows alph
|
||||
newPart = pairsWith (++) (newRows `union` newRowsExt) columns
|
||||
newPartRed = newPart \\ dom content
|
||||
newContent = mq newPartRed
|
||||
|
||||
-- Assumption: newColumns is disjoint from columns (for efficiency)
|
||||
addColumns :: (NominalType i, NominalType o) => MQ i o -> Set (ColumnIndex i) -> Table i o -> Table i o
|
||||
addColumns mq newColumns t@Table{..} =
|
||||
t { content = content `union` newContent
|
||||
, columns = columns `union` newColumns
|
||||
}
|
||||
where
|
||||
newColumnsExt = pairsWith (:) alph newColumns
|
||||
newPart = pairsWith (++) rows (newColumns `union` newColumnsExt)
|
||||
newPartRed = newPart \\ dom content
|
||||
newContent = mq newPartRed
|
Loading…
Add table
Reference in a new issue