1
Fork 0
mirror of https://github.com/Jaxan/nominal-lstar.git synced 2025-04-27 14:47:45 +02:00
nominal-lstar/src/Bollig.hs

116 lines
5.5 KiB
Haskell

{-# language PartialTypeSignatures #-}
{-# language RecordWildCards #-}
{-# OPTIONS_GHC -Wno-partial-type-signatures #-}
module Bollig where
import AbstractLStar
import SimpleObservationTable
import Teacher
import Data.List (tails)
import Debug.Trace
import NLambda hiding (alphabet)
import Prelude (Bool (..), Int, Maybe (..), Show (..), snd, ($), (++), (.))
-- Comparing two graphs of a function is inefficient in NLambda,
-- because we do not have a map data structure. (So the only way
-- is by taking a product and filtering on equal inputs.)
-- So instead of considering a row as E -> 2, we simply take it
-- as a subset.
-- This does hinder generalisations to other nominal join semi-
-- lattices than the Booleans.
-- The teacher interface is slightly inconvenient
-- But this is for a good reason. The type [i] -> o
-- doesn't work well in nlambda
mqToBool :: (NominalType i, Contextual i) => Teacher i -> MQ i Bool
mqToBool teacher words = simplify answer
where
realQ = membership teacher words
(inw, outw) = partition snd realQ
answer = map (setB True) inw `union` map (setB False) outw
setB b (w, _) = (w, b)
tableAt :: NominalType i => BTable i -> [i] -> [i] -> Formula
tableAt t s e = singleton True `eq` mapFilter (\(i, o) -> maybeIf ((s ++ e) `eq` i) o) (content t)
rfsaClosednessTest :: NominalType i => Set (BRow i) -> BTable i -> TestResult i
rfsaClosednessTest primesUpp t@Table{..} = case solve (isEmpty defect) of
Just True -> Succes
Just False -> trace "Not closed" $ Failed defect empty
Nothing -> trace "@@@ Unsolved Formula (rfsaClosednessTest) @@@" $
Failed defect empty
where
defect = filter (\ua -> brow t ua `neq` sum (filter (`isSubsetOf` brow t ua) primesUpp)) (rowsExt t)
rfsaConsistencyTest :: NominalType i => BTable i -> TestResult i
rfsaConsistencyTest t@Table{..} = case solve (isEmpty defect) of
Just True -> Succes
Just False -> trace "Not consistent" $ Failed empty defect
Nothing -> trace "@@@ Unsolved Formula (rfsaConsistencyTest) @@@" $
Failed empty defect
where
candidates = pairsWithFilter (\u1 u2 -> maybeIf (brow t u2 `isSubsetOf` brow t u1) (u1, u2)) rows rows
defect = triplesWithFilter (\(u1, u2) a v -> maybeIf (not (tableAt t (u1 ++ [a]) v) /\ tableAt t (u2 ++ [a]) v) (a:v)) candidates alph columns
constructHypothesisBollig :: NominalType i => Set (BRow i) -> BTable i -> Automaton (BRow i) i
constructHypothesisBollig primesUpp t@Table{..} = automaton q alph d i f
where
q = primesUpp
i = filter (`isSubsetOf` brow t []) q
f = filter (`contains` []) q
-- TODO: compute indices of primesUpp only once
d0 = triplesWithFilter (\s a s2 -> maybeIf (brow t s2 `isSubsetOf` brow t (s ++ [a])) (brow t s, a, brow t s2)) rows alph rows
d = filter (\(q1, _, q2) -> q1 `member` q /\ q2 `member` q) d0
-- Adds all suffixes as columns
-- TODO: do actual Rivest and Schapire
addCounterExample :: (NominalType i, _) => MQ i Bool -> Set [i] -> BTable i -> BTable i
addCounterExample mq ces t@Table{..} =
trace ("Using ce: " ++ show ces) $
let newColumns = sum . map (fromList . tails) $ ces
newColumnsRed = newColumns \\ columns
in addColumns mq newColumnsRed t
learnBollig :: (NominalType i, Contextual i, _) => Int -> Int -> Teacher i -> Automaton (BRow i) i
learnBollig k n teacher = learnBolligLoop teacher (initialTableSize (mqToBool teacher) (alphabet teacher) k n)
learnBolligLoop :: _ => Teacher i -> BTable i -> Automaton (BRow i) i
learnBolligLoop teacher t@Table{..} =
let
allRowsUpp = map (brow t) rows
allRows = allRowsUpp `union` map (brow t) (rowsExt t)
primesUpp = filter (\r -> isNotEmpty r /\ r `neq` sum (filter (`isSubsetOf` r) (allRows \\ orbit [] r))) allRowsUpp
-- No worry, these are computed lazily
closednessRes = rfsaClosednessTest primesUpp t
consistencyRes = rfsaConsistencyTest t
hyp = constructHypothesisBollig primesUpp t
in
trace "1. Making it rfsa closed" $
case closednessRes of
Failed newRows _ ->
let state2 = simplify $ addRows (mqToBool teacher) newRows t in
trace ("newrows = " ++ show newRows) $
learnBolligLoop teacher state2
Succes ->
trace "2. Making it rfsa consistent" $
case consistencyRes of
Failed _ newColumns ->
let state2 = simplify $ addColumns (mqToBool teacher) newColumns t in
trace ("newcols = " ++ show newColumns) $
learnBolligLoop teacher state2
Succes ->
traceShow hyp $
trace "3. Equivalent? " $
eqloop t hyp
where
eqloop s2 h = case equivalent teacher h of
Nothing -> trace "Yes" h
Just ces -> trace "No" $
if isTrue . isEmpty $ realces h ces
then eqloop s2 h
else
let s3 = addCounterExample (mqToBool teacher) ces s2 in
learnBolligLoop teacher s3
realces h ces = NLambda.filter (\(ce, a) -> a `neq` accepts h ce) $ membership teacher ces