1
Fork 0
mirror of https://github.com/Jaxan/nominal-lstar.git synced 2025-04-27 14:47:45 +02:00

Wrote a simpler data structure for the observation table. However, it is slower

This commit is contained in:
Joshua Moerman 2020-11-10 15:11:07 +01:00
parent 8a66ccaec5
commit 0b046ca73f
4 changed files with 162 additions and 39 deletions

View file

@ -15,7 +15,7 @@ myConfig = defaultConfig
main = defaultMainWith myConfig [
bgroup "NomNLStar"
[ bench "NFA1 -" $ whnf (learnBollig 0 0) (teacherWithTargetNonDet 2 Examples.exampleNFA1)
[ bench "NFA1 -" $ whnf (learnBollig 1 1) (teacherWithTargetNonDet 2 Examples.exampleNFA1)
, bench "NFA2 1" $ whnf (learnBollig 0 0) (teacherWithTargetNonDet 3 (Examples.exampleNFA2 1))
, bench "NFA2 2" $ whnf (learnBollig 0 0) (teacherWithTargetNonDet 4 (Examples.exampleNFA2 2))
]

View file

@ -32,6 +32,7 @@ library
Examples.RunningExample,
Examples.Stack,
ObservationTable,
SimpleObservationTable,
Teacher,
Teachers.Teacher,
Teachers.Terminal,

View file

@ -1,14 +1,16 @@
{-# language PartialTypeSignatures #-}
{-# language RecordWildCards #-}
{-# OPTIONS_GHC -Wno-partial-type-signatures #-}
module Bollig where
import AbstractLStar
import Angluin
import ObservationTable
import SimpleObservationTable
import Teacher
import Data.List (tails)
import Debug.Trace
import NLambda
import Prelude (Bool (..), Int, Maybe (..), ($), (++), (.))
import NLambda hiding (alphabet)
import Prelude (Bool (..), Int, Maybe (..), Show (..), snd, ($), (++), (.))
-- Comparing two graphs of a function is inefficient in NLambda,
-- because we do not have a map data structure. (So the only way
@ -17,74 +19,91 @@ import Prelude (Bool (..), Int, Maybe (..), ($), (++), (.))
-- as a subset.
-- This does hinder generalisations to other nominal join semi-
-- lattices than the Booleans.
brow :: (NominalType i) => Table i Bool -> [i] -> Set [i]
brow t is = mapFilter (\((a,b),c) -> maybeIf (eq is a /\ fromBool c) b) t
rfsaClosednessTest :: LearnableAlphabet i => Set (Set [i]) -> State i -> TestResult i
rfsaClosednessTest primesUpp State{..} = case solve (isEmpty defect) of
-- The teacher interface is slightly inconvenient
-- But this is for a good reason. The type [i] -> o
-- doesn't work well in nlambda
mqToBool :: (NominalType i, Contextual i) => Teacher i -> MQ i Bool
mqToBool teacher words = simplify answer
where
realQ = membership teacher words
(inw, outw) = partition snd realQ
answer = map (setB True) inw `union` map (setB False) outw
setB b (w, _) = (w, b)
tableAt :: NominalType i => BTable i -> [i] -> [i] -> Formula
tableAt t s e = singleton True `eq` mapFilter (\(i, o) -> maybeIf ((s ++ e) `eq` i) o) (content t)
rfsaClosednessTest :: NominalType i => Set (BRow i) -> BTable i -> TestResult i
rfsaClosednessTest primesUpp t@Table{..} = case solve (isEmpty defect) of
Just True -> Succes
Just False -> trace "Not closed" $ Failed defect empty
Nothing -> trace "@@@ Unsolved Formula (rfsaClosednessTest) @@@" $
Failed defect empty
where
defect = filter (\ua -> brow t ua `neq` sum (filter (`isSubsetOf` brow t ua) primesUpp)) ssa
defect = filter (\ua -> brow t ua `neq` sum (filter (`isSubsetOf` brow t ua) primesUpp)) (rowsExt t)
rfsaConsistencyTest :: LearnableAlphabet i => State i -> TestResult i
rfsaConsistencyTest State{..} = case solve (isEmpty defect) of
rfsaConsistencyTest :: NominalType i => BTable i -> TestResult i
rfsaConsistencyTest t@Table{..} = case solve (isEmpty defect) of
Just True -> Succes
Just False -> trace "Not consistent" $ Failed empty defect
Nothing -> trace "@@@ Unsolved Formula (rfsaConsistencyTest) @@@" $
Failed empty defect
where
candidates = pairsWithFilter (\u1 u2 -> maybeIf (brow t u2 `isSubsetOf` brow t u1) (u1, u2)) ss ss
defect = triplesWithFilter (\(u1, u2) a v -> maybeIf (not (tableAt t (u1 ++ [a]) v) /\ tableAt t (u2 ++ [a]) v) (a:v)) candidates aa ee
candidates = pairsWithFilter (\u1 u2 -> maybeIf (brow t u2 `isSubsetOf` brow t u1) (u1, u2)) rows rows
defect = triplesWithFilter (\(u1, u2) a v -> maybeIf (not (tableAt t (u1 ++ [a]) v) /\ tableAt t (u2 ++ [a]) v) (a:v)) candidates alph columns
-- Note that we do not have the same type of states as the angluin algorithm.
-- We have Set [i] instead of BRow i. (However, They are isomorphic.)
constructHypothesisBollig :: NominalType i => Set (Set [i]) -> State i -> Automaton (Set [i]) i
constructHypothesisBollig primesUpp State{..} = automaton q aa d i f
constructHypothesisBollig :: NominalType i => Set (BRow i) -> BTable i -> Automaton (BRow i) i
constructHypothesisBollig primesUpp t@Table{..} = automaton q alph d i f
where
q = primesUpp
i = filter (`isSubsetOf` brow t []) q
f = filter (`contains` []) q
d0 = triplesWithFilter (\s a s2 -> maybeIf (brow t s2 `isSubsetOf` brow t (s ++ [a])) (brow t s, a, brow t s2)) ss aa ss
-- TODO: compute indices of primesUpp only once
d0 = triplesWithFilter (\s a s2 -> maybeIf (brow t s2 `isSubsetOf` brow t (s ++ [a])) (brow t s, a, brow t s2)) rows alph rows
d = filter (\(q1, _, q2) -> q1 `member` q /\ q2 `member` q) d0
--makeCompleteBollig :: LearnableAlphabet i => TableCompletionHandler i
--makeCompleteBollig = makeCompleteWith [rfsaClosednessTest, rfsaConsistencyTest]
-- Adds all suffixes as columns
-- TODO: do actual Rivest and Schapire
addCounterExample :: (NominalType i, _) => MQ i Bool -> Set [i] -> BTable i -> BTable i
addCounterExample mq ces t@Table{..} =
trace ("Using ce: " ++ show ces) $
let newColumns = sum . map (fromList . tails) $ ces
newColumnsRed = newColumns \\ columns
in addColumns mq newColumnsRed t
learnBollig :: LearnableAlphabet i => Int -> Int -> Teacher i -> Automaton (Set [i]) i
--learnBollig k n teacher = learn makeCompleteBollig useCounterExampleMP constructHypothesisBollig teacher initial
-- where initial = constructEmptyState k n teacher
learnBollig :: (NominalType i, Contextual i, _) => Int -> Int -> Teacher i -> Automaton (BRow i) i
learnBollig k n teacher = learnBolligLoop teacher (initialTableSize (mqToBool teacher) (alphabet teacher) k n)
learnBollig k n teacher = learnBolligLoop teacher (constructEmptyState k n teacher)
learnBolligLoop teacher s1@State{..} =
learnBolligLoop :: _ => Teacher i -> BTable i -> Automaton (BRow i) i
learnBolligLoop teacher t@Table{..} =
let
allRowsUpp = map (brow t) ss
allRows = allRowsUpp `union` map (brow t) ssa
allRowsUpp = map (brow t) rows
allRows = allRowsUpp `union` map (brow t) (rowsExt t)
primesUpp = filter (\r -> isNotEmpty r /\ r `neq` sum (filter (`isSubsetOf` r) (allRows \\ orbit [] r))) allRowsUpp
-- No worry, these are computed lazily
closednessRes = rfsaClosednessTest primesUpp s1
consistencyRes = rfsaConsistencyTest s1
h = constructHypothesisBollig primesUpp s1
closednessRes = rfsaClosednessTest primesUpp t
consistencyRes = rfsaConsistencyTest t
hyp = constructHypothesisBollig primesUpp t
in
trace "1. Making it rfsa closed" $
case closednessRes of
Failed newRows _ ->
let state2 = simplify $ addRows teacher newRows s1 in
let state2 = simplify $ addRows (mqToBool teacher) newRows t in
trace ("newrows = " ++ show newRows) $
learnBolligLoop teacher state2
Succes ->
trace "1. Making it rfsa consistent" $
trace "2. Making it rfsa consistent" $
case consistencyRes of
Failed _ newColumns ->
let state2 = simplify $ addColumns teacher newColumns s1 in
let state2 = simplify $ addColumns (mqToBool teacher) newColumns t in
trace ("newcols = " ++ show newColumns) $
learnBolligLoop teacher state2
Succes ->
traceShow h $
traceShow hyp $
trace "3. Equivalent? " $
eqloop s1 h
eqloop t hyp
where
eqloop s2 h = case equivalent teacher h of
Nothing -> trace "Yes" h
@ -92,7 +111,6 @@ learnBolligLoop teacher s1@State{..} =
if isTrue . isEmpty $ realces h ces
then eqloop s2 h
else
let s3 = useCounterExampleMP teacher s2 ces in
let s3 = addCounterExample (mqToBool teacher) ces s2 in
learnBolligLoop teacher s3
realces h ces = NLambda.filter (\(ce, a) -> a `neq` accepts h ce) $ membership teacher ces

View file

@ -0,0 +1,104 @@
{-# language DeriveAnyClass #-}
{-# language DeriveGeneric #-}
{-# language RecordWildCards #-}
module SimpleObservationTable where
import NLambda hiding (fromJust)
import GHC.Generics (Generic)
import Prelude (Bool (..), Eq, Int, Ord, Show (..), fst, (++))
import qualified Prelude ()
-- We represent functions as their graphs
-- Except when o = Bool, more on that later
type Fun i o = Set (i, o)
dom :: (NominalType i, NominalType o) => Fun i o -> Set i
dom = map fst
-- Words are indices to our table
type RowIndex i = [i]
type ColumnIndex i = [i]
-- A table is nothing more than a part of the language.
-- Invariant: content is always defined for elements in
-- `rows * columns` and `rows * alph * columns`.
data Table i o = Table
{ content :: Fun [i] o
, rows :: Set (RowIndex i)
, columns :: Set (ColumnIndex i)
, alph :: Set i
}
deriving (Show, Ord, Eq, Generic, NominalType, Conditional, Contextual)
rowsExt :: (NominalType i, NominalType o) => Table i o -> Set (RowIndex i)
rowsExt Table{..} = pairsWith (\r a -> r ++ [a]) rows alph
columnsExt :: (NominalType i, NominalType o) => Table i o -> Set (RowIndex i)
columnsExt Table{..} = pairsWith (:) alph columns
-- I could make a more specific implementation for booleans
-- But for now we reuse the above.
type BTable i = Table i Bool
-- A row is the data in a table, i.e. a function from columns to the output
type Row i o = Fun [i] o
row :: (NominalType i, NominalType o) => Table i o -> RowIndex i -> Row i o
row Table{..} r = pairsWithFilter (\e (a, b) -> maybeIf (a `eq` (r ++ e)) (e, b)) columns content
-- Special case of a boolean: functions to Booleans are subsets
type BRow i = Set [i]
-- TODO: slightly inefficient
brow :: NominalType i => BTable i -> RowIndex i -> BRow i
brow Table{..} r = let lang = mapFilter (\(i, o) -> maybeIf (fromBool o) i) content
in filter (\a -> lang `contains` (r ++ a)) columns
-- Membership queries (TODO: move to Teacher)
type MQ i o = Set [i] -> Set ([i], o)
initialTableWith :: (NominalType i, NominalType o) => MQ i o -> Set i -> Set (RowIndex i) -> Set (ColumnIndex i) -> Table i o
initialTableWith mq alphabet newRows newColumns = Table
{ content = content
, rows = newRows
, columns = newColumns
, alph = alphabet
}
where
newColumnsExt = pairsWith (:) alphabet newColumns
domain = pairsWith (++) newRows (newColumns `union` newColumnsExt)
content = mq domain
initialTable :: (NominalType i, NominalType o) => MQ i o -> Set i -> Table i o
initialTable mq alphabet = initialTableWith mq alphabet (singleton []) (singleton [])
initialTableSize :: (NominalType i, NominalType o) => MQ i o -> Set i -> Int -> Int -> Table i o
initialTableSize mq alphabet rs cs = initialTableWith mq alphabet (replicateSetUntil rs alphabet) (replicateSetUntil cs alphabet)
-- Assumption: newRows is disjoint from rows (for efficiency)
addRows :: (NominalType i, NominalType o) => MQ i o -> Set (RowIndex i) -> Table i o -> Table i o
addRows mq newRows t@Table{..} =
t { content = content `union` newContent
, rows = rows `union` newRows
}
where
newRowsExt = pairsWith (\r a -> r ++ [a]) newRows alph
newPart = pairsWith (++) (newRows `union` newRowsExt) columns
newPartRed = newPart \\ dom content
newContent = mq newPartRed
-- Assumption: newColumns is disjoint from columns (for efficiency)
addColumns :: (NominalType i, NominalType o) => MQ i o -> Set (ColumnIndex i) -> Table i o -> Table i o
addColumns mq newColumns t@Table{..} =
t { content = content `union` newContent
, columns = columns `union` newColumns
}
where
newColumnsExt = pairsWith (:) alph newColumns
newPart = pairsWith (++) rows (newColumns `union` newColumnsExt)
newPartRed = newPart \\ dom content
newContent = mq newPartRed