1
Fork 0
mirror of https://github.com/Jaxan/satuio.git synced 2025-04-27 06:37:45 +02:00

Mor efficient CNF, no n^2 anymore, but the construction only takes reachable states in a path

This commit is contained in:
Joshua Moerman 2022-01-17 11:02:04 +01:00
parent 8b2750e07a
commit c8e587526d

88
uio.py
View file

@ -16,7 +16,9 @@ def measure_time(*str):
start = now
# Automaton
# *********************
# Reading the automaton
# *********************
parser = argparse.ArgumentParser()
parser.add_argument('filename', help='File of the mealy machine (dot format)')
@ -55,7 +57,9 @@ with open(args.filename) as file:
measure_time('Constructed automaton with', len(states), 'states and', len(alphabet), 'symbols')
# Solver setup
# ********************
# Seting up the solver
# ********************
vpool = IDPool()
solver = Solver(name=solver_name)
@ -101,7 +105,9 @@ def unique(lits):
measure_time('Setup solver')
# Construction
# ********************
# Constructing the CNF
# ********************
# Guessing the word:
# variable x_('in', i, a) says: on place i there is an input a
@ -111,40 +117,56 @@ for i in range(length):
# We should only enable one base state (this allows for an optimisation later)
unique([bvar(base) for base in bases])
for s in tqdm(states, desc="simple stuff"):
for i in range(length):
# variable x_('out', s, i, a) says: on place i there is an output o of the path s
unique([ovar(s, i, o) for o in outputs])
# For each state s, we construct a path of possible successor states,
# following the guessed word. This path should be consistent with delta,
# and we also record the outputs along this path. The output are later
# used to decide whether we found a different output.
for s in tqdm(states, desc="CNF construction"):
# current set of possible states we're in
current_set = set([s])
# set of successors for the next iteration of i
next_set = set()
if i == 0:
# The paths start in the corresponding state
# This could be used to reduce some variables, but I'm lazy now
solver.add_clause([svar(s, 0, s)])
else:
# variable x_('state', s, i, t) denotes the path through the automaton starting in s
unique([svar(s, i, t) for t in states])
# The path is consistent with the delta function
# The outputs correspond to the output along the path
# I have merged these loops, it was slightly faster
for s in tqdm(states, desc="paths & outputs"):
for i in range(length):
for t in states:
sv = svar(s, i, t)
for a in alphabet:
av = avar(i, a)
# We couple i with i+1, and so skip the last iteration
if i < length-1:
# x_('s', s, i, t) /\ x_('in', i, a) => x_('s', s, i+1, delta(t, a))
# == -x_('s', s, i, t) \/ -x_('in', i, a) \/ x_('s', s, i+1, delta(t, a))
next_t = delta[(t, a)]
solver.add_clause([-sv, -av, svar(s, i+1, next_t)])
# Only one successor state should be enable (probably redundant)
# For i == 0, this is a single state (namely s)
unique([svar(s, i, t) for t in current_set])
# We keep track of the possible outputs
possible_outputs = set()
for a in alphabet:
av = avar(i, a)
for t in current_set:
sv = svar(s, i, t)
output = labda[(t, a)]
possible_outputs.add(output)
# Constraint: when in state t and input a, we output o
# x_('s', state, i, t) /\ x_('in', i, a) => x_('o', i, labda(t, a))
# == -x_('s', state, i, t) \/ -x_('in', i, a) \/ x_('o', i, labda(t, a))
output = labda[(t, a)]
solver.add_clause([-sv, -av, ovar(s, i, output)])
# when i == length-1 we don't need to consider successors
if i < length-1:
next_t = delta[(t, a)]
next_set.add(next_t)
# Constraint: when in state t and input a, we go to next_t
# x_('s', s, i, t) /\ x_('in', i, a) => x_('s', s, i+1, delta(t, a))
# == -x_('s', s, i, t) \/ -x_('in', i, a) \/ x_('s', s, i+1, delta(t, a))
solver.add_clause([-sv, -av, svar(s, i+1, next_t)])
# Only one output should be enabled
# variable x_('out', s, i, a) says: on place i there is an output o of the path s
unique([ovar(s, i, o) for o in possible_outputs])
# Next iteration with successor states
current_set = next_set
next_set = set()
# If(f) the output of a state is different than the one from our base state,
# then, we encode that in a new variable. This is only needed when the base
# state is active, so the first literal in these clauses is -bvar(base).
@ -177,7 +199,9 @@ for s in tqdm(states, desc="diff2"):
measure_time('Constructed CNF with', solver.nof_clauses(), 'clauses and', solver.nof_vars(), 'variables')
# Solving
# ******************
# Solving and output
# ******************
for s in bases:
print('*** UIO for state', s)