1
Fork 0
mirror of https://github.com/Jaxan/satuio.git synced 2025-04-27 14:47:46 +02:00

Fixed one constraint concerning outputs, and improved output

This commit is contained in:
Joshua Moerman 2022-01-17 12:00:57 +01:00
parent c8e587526d
commit dfb77c02a0

123
uio.py
View file

@ -1,9 +1,11 @@
# Import the solvers and utilities
from pysat.solvers import Solver
from pysat.formula import IDPool
from pysat.card import CardEnc, EncType
import time
import argparse
from tqdm import tqdm
import time # Time for rough timing measurements
import argparse # Command line options
from tqdm import tqdm # Import fancy progress bars
from rich.console import Console # Import colorized output
solver_name = 'g3'
verbose = True
@ -121,6 +123,7 @@ unique([bvar(base) for base in bases])
# following the guessed word. This path should be consistent with delta,
# and we also record the outputs along this path. The output are later
# used to decide whether we found a different output.
possible_outputs = {}
for s in tqdm(states, desc="CNF construction"):
# current set of possible states we're in
current_set = set([s])
@ -133,15 +136,16 @@ for s in tqdm(states, desc="CNF construction"):
unique([svar(s, i, t) for t in current_set])
# We keep track of the possible outputs
possible_outputs = set()
possible_outputs[(s, i)] = set()
for a in alphabet:
av = avar(i, a)
for t in current_set:
sv = svar(s, i, t)
for a in alphabet:
av = avar(i, a)
for t in current_set:
sv = svar(s, i, t)
output = labda[(t, a)]
possible_outputs.add(output)
possible_outputs[(s, i)].add(output)
# Constraint: when in state t and input a, we output o
# x_('s', state, i, t) /\ x_('in', i, a) => x_('o', i, labda(t, a))
@ -160,7 +164,7 @@ for s in tqdm(states, desc="CNF construction"):
# Only one output should be enabled
# variable x_('out', s, i, a) says: on place i there is an output o of the path s
unique([ovar(s, i, o) for o in possible_outputs])
unique([ovar(s, i, o) for o in possible_outputs[(s, i)]])
# Next iteration with successor states
current_set = next_set
@ -170,25 +174,8 @@ for s in tqdm(states, desc="CNF construction"):
# If(f) the output of a state is different than the one from our base state,
# then, we encode that in a new variable. This is only needed when the base
# state is active, so the first literal in these clauses is -bvar(base).
for s in tqdm(states, desc="diff1"):
for base in bases:
if s == base:
continue
bv = bvar(base)
for i in range(length):
for o in outputs:
# x_('o', state, i, o) /\ -x_('o', s, i, o) => x_('e', s, i)
# == -x_('o', state, i, o) \/ x_('o', s, i, o) \/ -x_('e', s, i)
solver.add_clause([-bv, -ovar(base, i, o), ovar(s, i, o), evar(s, i)])
# We also need the other direction, we can do this:
# x_('e', s, i) /\ x_('o', state, i, o) => -x_('o', s, i, o)
# == -x_('e', s, i) \/ -x_('o', state, i, o) \/ -x_('o', s, i, o)
solver.add_clause([-bv, -evar(s, i), -ovar(base, i, o), -ovar(s, i, o)])
# Now we have to say that the other state have some different output on their path
for s in tqdm(states, desc="diff2"):
# constraint: there is a place, such that there is a difference in output
for s in tqdm(states, desc="difference"):
# Constraint: there is a place, such that there is a difference in output
# \/_i x_('e', s, i)
# If s is our base, we don't care
if s in bases:
@ -196,6 +183,27 @@ for s in tqdm(states, desc="diff2"):
else:
solver.add_clause([evar(s, i) for i in range(length)])
# Now we actually encode when the difference occurs
for base in bases:
if s == base:
continue
bv = bvar(base)
for i in range(length):
outputs_base = possible_outputs[(base, i)]
outputs_s = possible_outputs[(s, i)]
# We encode, if the base is enabled and there is a difference,
# then the outputs should actually differ. (We do not have to
# encode the other implication!)
# x_('b', base) /\ x_('e', s, i) /\ x_('o', base, i, o) => -x_('o', s, i, o)
# Note: when o is not possible for state s, then the clause already holds
for o in outputs_base:
if o in outputs_s:
solver.add_clause([-bv, -evar(s, i), -ovar(base, i, o), -ovar(s, i, o)])
measure_time('Constructed CNF with', solver.nof_clauses(), 'clauses and', solver.nof_vars(), 'variables')
@ -203,9 +211,13 @@ measure_time('Constructed CNF with', solver.nof_clauses(), 'clauses and', solver
# Solving and output
# ******************
for s in bases:
print('*** UIO for state', s)
b = solver.solve(assumptions=[bvar(s)])
console = Console(markup=False, highlight=False)
max_state_length = max([len(str) for str in states])
for base in bases:
console.print('')
console.print('*** UIO for state', base, style='bold blue')
b = solver.solve(assumptions=[bvar(base)])
measure_time('Solver finished')
if b:
@ -215,45 +227,38 @@ for s in bases:
if l > 0:
truth.add(l)
print('! word')
console.print('! UIO of length', length, style='bold green')
for i in range(length):
for a in alphabet:
if avar(i, a) in truth:
print(a, end=' ')
print('')
console.print(a, end=' ', style='bold')
console.print('')
# For each state, we print the paths and output.
# We mark the differences red (there can be differences not
# marked, these are the differences decided in the solving).
if verbose:
print('! paths')
console.print('! paths')
for s in states:
print(s, '=>', end=' ')
console.print(s.rjust(max_state_length, ' '), '=>', end=' ')
for i in range(length):
for t in states:
if svar(s, i, t) in truth:
print(t, end=' ')
print('')
console.print(t, end=' ')
print('! outputs')
for s in states:
print(s, '=>', end=' ')
for i in range(length):
for o in outputs:
for o in possible_outputs[(s, i)]:
if ovar(s, i, o) in truth:
print(o, end=' ')
print('')
style = ''
if s == base:
style = 'bold green'
elif evar(s, i) in truth:
style = 'bold red'
print('! differences')
for s in states:
if s == base:
continue
print(s, '=>', end=' ')
for i in range(length):
if evar(s, i) in truth:
print('x', end='')
else:
print('.', end='')
print('')
console.print(o, end=', ', style=style)
console.print('')
else:
print('! no word')
console.print('! no UIO of length', length, style='bold red')
core = solver.get_core()
print(core)
# The core returned by the solver is not interesting:
# It is only the assumption (i.e. bvar).